openssl/test/ectest.c

2953 lines
119 KiB
C
Raw Normal View History

/*
* Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
2001-03-05 20:32:41 +00:00
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
2001-03-05 20:32:41 +00:00
*/
/*
* EC_KEY low level APIs are deprecated for public use, but still ok for
* internal use.
*/
#include "internal/deprecated.h"
#include <string.h>
#include "internal/nelem.h"
#include "testutil.h"
#include <openssl/ec.h>
#ifndef OPENSSL_NO_ENGINE
# include <openssl/engine.h>
#endif
#include <openssl/err.h>
#include <openssl/obj_mac.h>
#include <openssl/objects.h>
#include <openssl/rand.h>
#include <openssl/bn.h>
#include <openssl/opensslconf.h>
#include "openssl/core_names.h"
#include "openssl/param_build.h"
#include "openssl/evp.h"
static size_t crv_len = 0;
static EC_builtin_curve *curves = NULL;
/* test multiplication with group order, long and negative scalars */
static int group_order_tests(EC_GROUP *group)
{
BIGNUM *n1 = NULL, *n2 = NULL, *order = NULL;
EC_POINT *P = NULL, *Q = NULL, *R = NULL, *S = NULL;
const EC_POINT *G = NULL;
BN_CTX *ctx = NULL;
int i = 0, r = 0;
if (!TEST_ptr(n1 = BN_new())
|| !TEST_ptr(n2 = BN_new())
|| !TEST_ptr(order = BN_new())
|| !TEST_ptr(ctx = BN_CTX_new())
|| !TEST_ptr(G = EC_GROUP_get0_generator(group))
|| !TEST_ptr(P = EC_POINT_new(group))
|| !TEST_ptr(Q = EC_POINT_new(group))
|| !TEST_ptr(R = EC_POINT_new(group))
|| !TEST_ptr(S = EC_POINT_new(group)))
goto err;
if (!TEST_true(EC_GROUP_get_order(group, order, ctx))
|| !TEST_true(EC_POINT_mul(group, Q, order, NULL, NULL, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, Q))
#ifndef OPENSSL_NO_DEPRECATED_3_0
|| !TEST_true(EC_GROUP_precompute_mult(group, ctx))
#endif
|| !TEST_true(EC_POINT_mul(group, Q, order, NULL, NULL, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, Q))
|| !TEST_true(EC_POINT_copy(P, G))
|| !TEST_true(BN_one(n1))
|| !TEST_true(EC_POINT_mul(group, Q, n1, NULL, NULL, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, Q, P, ctx))
|| !TEST_true(BN_sub(n1, order, n1))
|| !TEST_true(EC_POINT_mul(group, Q, n1, NULL, NULL, ctx))
|| !TEST_true(EC_POINT_invert(group, Q, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, Q, P, ctx)))
goto err;
for (i = 1; i <= 2; i++) {
#ifndef OPENSSL_NO_DEPRECATED_3_0
const BIGNUM *scalars[6];
const EC_POINT *points[6];
#endif
if (!TEST_true(BN_set_word(n1, i))
/*
* If i == 1, P will be the predefined generator for which
* EC_GROUP_precompute_mult has set up precomputation.
*/
|| !TEST_true(EC_POINT_mul(group, P, n1, NULL, NULL, ctx))
|| (i == 1 && !TEST_int_eq(0, EC_POINT_cmp(group, P, G, ctx)))
|| !TEST_true(BN_one(n1))
/* n1 = 1 - order */
|| !TEST_true(BN_sub(n1, n1, order))
|| !TEST_true(EC_POINT_mul(group, Q, NULL, P, n1, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, Q, P, ctx))
/* n2 = 1 + order */
|| !TEST_true(BN_add(n2, order, BN_value_one()))
|| !TEST_true(EC_POINT_mul(group, Q, NULL, P, n2, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, Q, P, ctx))
/* n2 = (1 - order) * (1 + order) = 1 - order^2 */
|| !TEST_true(BN_mul(n2, n1, n2, ctx))
|| !TEST_true(EC_POINT_mul(group, Q, NULL, P, n2, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, Q, P, ctx)))
goto err;
/* n2 = order^2 - 1 */
BN_set_negative(n2, 0);
if (!TEST_true(EC_POINT_mul(group, Q, NULL, P, n2, ctx))
/* Add P to verify the result. */
|| !TEST_true(EC_POINT_add(group, Q, Q, P, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, Q))
|| !TEST_false(EC_POINT_is_at_infinity(group, P)))
goto err;
#ifndef OPENSSL_NO_DEPRECATED_3_0
/* Exercise EC_POINTs_mul, including corner cases. */
scalars[0] = scalars[1] = BN_value_one();
points[0] = points[1] = P;
if (!TEST_true(EC_POINTs_mul(group, R, NULL, 2, points, scalars, ctx))
|| !TEST_true(EC_POINT_dbl(group, S, points[0], ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, R, S, ctx)))
goto err;
scalars[0] = n1;
points[0] = Q; /* => infinity */
scalars[1] = n2;
points[1] = P; /* => -P */
scalars[2] = n1;
points[2] = Q; /* => infinity */
scalars[3] = n2;
points[3] = Q; /* => infinity */
scalars[4] = n1;
points[4] = P; /* => P */
scalars[5] = n2;
points[5] = Q; /* => infinity */
if (!TEST_true(EC_POINTs_mul(group, P, NULL, 6, points, scalars, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, P)))
goto err;
#endif
}
r = 1;
err:
if (r == 0 && i != 0)
TEST_info(i == 1 ? "allowing precomputation" :
"without precomputation");
EC_POINT_free(P);
EC_POINT_free(Q);
EC_POINT_free(R);
EC_POINT_free(S);
BN_free(n1);
BN_free(n2);
BN_free(order);
BN_CTX_free(ctx);
return r;
}
static int prime_field_tests(void)
{
BN_CTX *ctx = NULL;
BIGNUM *p = NULL, *a = NULL, *b = NULL, *scalar3 = NULL;
EC_GROUP *group = NULL;
EC_POINT *P = NULL, *Q = NULL, *R = NULL;
BIGNUM *x = NULL, *y = NULL, *z = NULL, *yplusone = NULL;
#ifndef OPENSSL_NO_DEPRECATED_3_0
const EC_POINT *points[4];
const BIGNUM *scalars[4];
#endif
unsigned char buf[100];
size_t len, r = 0;
int k;
if (!TEST_ptr(ctx = BN_CTX_new())
|| !TEST_ptr(p = BN_new())
|| !TEST_ptr(a = BN_new())
|| !TEST_ptr(b = BN_new())
|| !TEST_true(BN_hex2bn(&p, "17"))
|| !TEST_true(BN_hex2bn(&a, "1"))
|| !TEST_true(BN_hex2bn(&b, "1"))
|| !TEST_ptr(group = EC_GROUP_new_curve_GFp(p, a, b, ctx))
|| !TEST_true(EC_GROUP_get_curve(group, p, a, b, ctx)))
goto err;
TEST_info("Curve defined by Weierstrass equation");
TEST_note(" y^2 = x^3 + a*x + b (mod p)");
test_output_bignum("a", a);
test_output_bignum("b", b);
test_output_bignum("p", p);
buf[0] = 0;
if (!TEST_ptr(P = EC_POINT_new(group))
|| !TEST_ptr(Q = EC_POINT_new(group))
|| !TEST_ptr(R = EC_POINT_new(group))
|| !TEST_true(EC_POINT_set_to_infinity(group, P))
|| !TEST_true(EC_POINT_is_at_infinity(group, P))
|| !TEST_true(EC_POINT_oct2point(group, Q, buf, 1, ctx))
|| !TEST_true(EC_POINT_add(group, P, P, Q, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, P))
|| !TEST_ptr(x = BN_new())
|| !TEST_ptr(y = BN_new())
|| !TEST_ptr(z = BN_new())
|| !TEST_ptr(yplusone = BN_new())
|| !TEST_true(BN_hex2bn(&x, "D"))
|| !TEST_true(EC_POINT_set_compressed_coordinates(group, Q, x, 1, ctx)))
goto err;
if (!TEST_int_gt(EC_POINT_is_on_curve(group, Q, ctx), 0)) {
if (!TEST_true(EC_POINT_get_affine_coordinates(group, Q, x, y, ctx)))
goto err;
TEST_info("Point is not on curve");
test_output_bignum("x", x);
test_output_bignum("y", y);
goto err;
}
TEST_note("A cyclic subgroup:");
k = 100;
do {
if (!TEST_int_ne(k--, 0))
goto err;
if (EC_POINT_is_at_infinity(group, P)) {
TEST_note(" point at infinity");
} else {
if (!TEST_true(EC_POINT_get_affine_coordinates(group, P, x, y,
ctx)))
goto err;
test_output_bignum("x", x);
test_output_bignum("y", y);
}
if (!TEST_true(EC_POINT_copy(R, P))
|| !TEST_true(EC_POINT_add(group, P, P, Q, ctx)))
goto err;
} while (!EC_POINT_is_at_infinity(group, P));
if (!TEST_true(EC_POINT_add(group, P, Q, R, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, P)))
goto err;
len =
EC_POINT_point2oct(group, Q, POINT_CONVERSION_COMPRESSED, buf,
sizeof(buf), ctx);
if (!TEST_size_t_ne(len, 0)
|| !TEST_true(EC_POINT_oct2point(group, P, buf, len, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, P, Q, ctx)))
goto err;
test_output_memory("Generator as octet string, compressed form:",
buf, len);
len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_UNCOMPRESSED,
buf, sizeof(buf), ctx);
if (!TEST_size_t_ne(len, 0)
|| !TEST_true(EC_POINT_oct2point(group, P, buf, len, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, P, Q, ctx)))
goto err;
test_output_memory("Generator as octet string, uncompressed form:",
buf, len);
len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_HYBRID,
buf, sizeof(buf), ctx);
if (!TEST_size_t_ne(len, 0)
|| !TEST_true(EC_POINT_oct2point(group, P, buf, len, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, P, Q, ctx)))
goto err;
test_output_memory("Generator as octet string, hybrid form:",
buf, len);
if (!TEST_true(EC_POINT_invert(group, P, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, P, R, ctx))
/*
* Curve secp160r1 (Certicom Research SEC 2 Version 1.0, section 2.4.2,
* 2000) -- not a NIST curve, but commonly used
*/
|| !TEST_true(BN_hex2bn(&p, "FFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF"))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, "FFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFC"))
|| !TEST_true(BN_hex2bn(&b, "1C97BEFC"
"54BD7A8B65ACF89F81D4D4ADC565FA45"))
|| !TEST_true(EC_GROUP_set_curve(group, p, a, b, ctx))
|| !TEST_true(BN_hex2bn(&x, "4A96B568"
"8EF573284664698968C38BB913CBFC82"))
|| !TEST_true(BN_hex2bn(&y, "23a62855"
"3168947d59dcc912042351377ac5fb32"))
|| !TEST_true(BN_add(yplusone, y, BN_value_one()))
/*
* When (x, y) is on the curve, (x, y + 1) is, as it happens, not,
* and therefore setting the coordinates should fail.
*/
|| !TEST_false(EC_POINT_set_affine_coordinates(group, P, x, yplusone,
ctx))
|| !TEST_true(EC_POINT_set_affine_coordinates(group, P, x, y, ctx))
|| !TEST_int_gt(EC_POINT_is_on_curve(group, P, ctx), 0)
|| !TEST_true(BN_hex2bn(&z, "0100000000"
"000000000001F4C8F927AED3CA752257"))
|| !TEST_true(EC_GROUP_set_generator(group, P, z, BN_value_one()))
|| !TEST_true(EC_POINT_get_affine_coordinates(group, P, x, y, ctx)))
goto err;
TEST_info("SEC2 curve secp160r1 -- Generator");
test_output_bignum("x", x);
test_output_bignum("y", y);
/* G_y value taken from the standard: */
if (!TEST_true(BN_hex2bn(&z, "23a62855"
"3168947d59dcc912042351377ac5fb32"))
|| !TEST_BN_eq(y, z)
|| !TEST_int_eq(EC_GROUP_get_degree(group), 160)
|| !group_order_tests(group)
/* Curve P-192 (FIPS PUB 186-2, App. 6) */
|| !TEST_true(BN_hex2bn(&p, "FFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF"))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, "FFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC"))
|| !TEST_true(BN_hex2bn(&b, "64210519E59C80E7"
"0FA7E9AB72243049FEB8DEECC146B9B1"))
|| !TEST_true(EC_GROUP_set_curve(group, p, a, b, ctx))
|| !TEST_true(BN_hex2bn(&x, "188DA80EB03090F6"
"7CBF20EB43A18800F4FF0AFD82FF1012"))
|| !TEST_true(EC_POINT_set_compressed_coordinates(group, P, x, 1, ctx))
|| !TEST_int_gt(EC_POINT_is_on_curve(group, P, ctx), 0)
|| !TEST_true(BN_hex2bn(&z, "FFFFFFFFFFFFFFFF"
"FFFFFFFF99DEF836146BC9B1B4D22831"))
|| !TEST_true(EC_GROUP_set_generator(group, P, z, BN_value_one()))
|| !TEST_true(EC_POINT_get_affine_coordinates(group, P, x, y, ctx)))
goto err;
TEST_info("NIST curve P-192 -- Generator");
test_output_bignum("x", x);
test_output_bignum("y", y);
/* G_y value taken from the standard: */
if (!TEST_true(BN_hex2bn(&z, "07192B95FFC8DA78"
"631011ED6B24CDD573F977A11E794811"))
|| !TEST_BN_eq(y, z)
|| !TEST_true(BN_add(yplusone, y, BN_value_one()))
/*
* When (x, y) is on the curve, (x, y + 1) is, as it happens, not,
* and therefore setting the coordinates should fail.
*/
|| !TEST_false(EC_POINT_set_affine_coordinates(group, P, x, yplusone,
ctx))
|| !TEST_int_eq(EC_GROUP_get_degree(group), 192)
|| !group_order_tests(group)
/* Curve P-224 (FIPS PUB 186-2, App. 6) */
|| !TEST_true(BN_hex2bn(&p, "FFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFF000000000000000000000001"))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, "FFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE"))
|| !TEST_true(BN_hex2bn(&b, "B4050A850C04B3ABF5413256"
"5044B0B7D7BFD8BA270B39432355FFB4"))
|| !TEST_true(EC_GROUP_set_curve(group, p, a, b, ctx))
|| !TEST_true(BN_hex2bn(&x, "B70E0CBD6BB4BF7F321390B9"
"4A03C1D356C21122343280D6115C1D21"))
|| !TEST_true(EC_POINT_set_compressed_coordinates(group, P, x, 0, ctx))
|| !TEST_int_gt(EC_POINT_is_on_curve(group, P, ctx), 0)
|| !TEST_true(BN_hex2bn(&z, "FFFFFFFFFFFFFFFFFFFFFFFF"
"FFFF16A2E0B8F03E13DD29455C5C2A3D"))
|| !TEST_true(EC_GROUP_set_generator(group, P, z, BN_value_one()))
|| !TEST_true(EC_POINT_get_affine_coordinates(group, P, x, y, ctx)))
goto err;
TEST_info("NIST curve P-224 -- Generator");
test_output_bignum("x", x);
test_output_bignum("y", y);
/* G_y value taken from the standard: */
if (!TEST_true(BN_hex2bn(&z, "BD376388B5F723FB4C22DFE6"
"CD4375A05A07476444D5819985007E34"))
|| !TEST_BN_eq(y, z)
|| !TEST_true(BN_add(yplusone, y, BN_value_one()))
/*
* When (x, y) is on the curve, (x, y + 1) is, as it happens, not,
* and therefore setting the coordinates should fail.
*/
|| !TEST_false(EC_POINT_set_affine_coordinates(group, P, x, yplusone,
ctx))
|| !TEST_int_eq(EC_GROUP_get_degree(group), 224)
|| !group_order_tests(group)
/* Curve P-256 (FIPS PUB 186-2, App. 6) */
|| !TEST_true(BN_hex2bn(&p, "FFFFFFFF000000010000000000000000"
"00000000FFFFFFFFFFFFFFFFFFFFFFFF"))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, "FFFFFFFF000000010000000000000000"
"00000000FFFFFFFFFFFFFFFFFFFFFFFC"))
|| !TEST_true(BN_hex2bn(&b, "5AC635D8AA3A93E7B3EBBD55769886BC"
"651D06B0CC53B0F63BCE3C3E27D2604B"))
|| !TEST_true(EC_GROUP_set_curve(group, p, a, b, ctx))
|| !TEST_true(BN_hex2bn(&x, "6B17D1F2E12C4247F8BCE6E563A440F2"
"77037D812DEB33A0F4A13945D898C296"))
|| !TEST_true(EC_POINT_set_compressed_coordinates(group, P, x, 1, ctx))
|| !TEST_int_gt(EC_POINT_is_on_curve(group, P, ctx), 0)
|| !TEST_true(BN_hex2bn(&z, "FFFFFFFF00000000FFFFFFFFFFFFFFFF"
"BCE6FAADA7179E84F3B9CAC2FC632551"))
|| !TEST_true(EC_GROUP_set_generator(group, P, z, BN_value_one()))
|| !TEST_true(EC_POINT_get_affine_coordinates(group, P, x, y, ctx)))
goto err;
TEST_info("NIST curve P-256 -- Generator");
test_output_bignum("x", x);
test_output_bignum("y", y);
/* G_y value taken from the standard: */
if (!TEST_true(BN_hex2bn(&z, "4FE342E2FE1A7F9B8EE7EB4A7C0F9E16"
"2BCE33576B315ECECBB6406837BF51F5"))
|| !TEST_BN_eq(y, z)
|| !TEST_true(BN_add(yplusone, y, BN_value_one()))
/*
* When (x, y) is on the curve, (x, y + 1) is, as it happens, not,
* and therefore setting the coordinates should fail.
*/
|| !TEST_false(EC_POINT_set_affine_coordinates(group, P, x, yplusone,
ctx))
|| !TEST_int_eq(EC_GROUP_get_degree(group), 256)
|| !group_order_tests(group)
/* Curve P-384 (FIPS PUB 186-2, App. 6) */
|| !TEST_true(BN_hex2bn(&p, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE"
"FFFFFFFF0000000000000000FFFFFFFF"))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE"
"FFFFFFFF0000000000000000FFFFFFFC"))
|| !TEST_true(BN_hex2bn(&b, "B3312FA7E23EE7E4988E056BE3F82D19"
"181D9C6EFE8141120314088F5013875A"
"C656398D8A2ED19D2A85C8EDD3EC2AEF"))
|| !TEST_true(EC_GROUP_set_curve(group, p, a, b, ctx))
|| !TEST_true(BN_hex2bn(&x, "AA87CA22BE8B05378EB1C71EF320AD74"
"6E1D3B628BA79B9859F741E082542A38"
"5502F25DBF55296C3A545E3872760AB7"))
|| !TEST_true(EC_POINT_set_compressed_coordinates(group, P, x, 1, ctx))
|| !TEST_int_gt(EC_POINT_is_on_curve(group, P, ctx), 0)
|| !TEST_true(BN_hex2bn(&z, "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFC7634D81F4372DDF"
"581A0DB248B0A77AECEC196ACCC52973"))
|| !TEST_true(EC_GROUP_set_generator(group, P, z, BN_value_one()))
|| !TEST_true(EC_POINT_get_affine_coordinates(group, P, x, y, ctx)))
goto err;
TEST_info("NIST curve P-384 -- Generator");
test_output_bignum("x", x);
test_output_bignum("y", y);
/* G_y value taken from the standard: */
if (!TEST_true(BN_hex2bn(&z, "3617DE4A96262C6F5D9E98BF9292DC29"
"F8F41DBD289A147CE9DA3113B5F0B8C0"
"0A60B1CE1D7E819D7A431D7C90EA0E5F"))
|| !TEST_BN_eq(y, z)
|| !TEST_true(BN_add(yplusone, y, BN_value_one()))
/*
* When (x, y) is on the curve, (x, y + 1) is, as it happens, not,
* and therefore setting the coordinates should fail.
*/
|| !TEST_false(EC_POINT_set_affine_coordinates(group, P, x, yplusone,
ctx))
|| !TEST_int_eq(EC_GROUP_get_degree(group), 384)
|| !group_order_tests(group)
/* Curve P-521 (FIPS PUB 186-2, App. 6) */
|| !TEST_true(BN_hex2bn(&p, "1FF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, "1FF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC"))
|| !TEST_true(BN_hex2bn(&b, "051"
"953EB9618E1C9A1F929A21A0B68540EE"
"A2DA725B99B315F3B8B489918EF109E1"
"56193951EC7E937B1652C0BD3BB1BF07"
"3573DF883D2C34F1EF451FD46B503F00"))
|| !TEST_true(EC_GROUP_set_curve(group, p, a, b, ctx))
|| !TEST_true(BN_hex2bn(&x, "C6"
"858E06B70404E9CD9E3ECB662395B442"
"9C648139053FB521F828AF606B4D3DBA"
"A14B5E77EFE75928FE1DC127A2FFA8DE"
"3348B3C1856A429BF97E7E31C2E5BD66"))
|| !TEST_true(EC_POINT_set_compressed_coordinates(group, P, x, 0, ctx))
|| !TEST_int_gt(EC_POINT_is_on_curve(group, P, ctx), 0)
|| !TEST_true(BN_hex2bn(&z, "1FF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA"
"51868783BF2F966B7FCC0148F709A5D0"
"3BB5C9B8899C47AEBB6FB71E91386409"))
|| !TEST_true(EC_GROUP_set_generator(group, P, z, BN_value_one()))
|| !TEST_true(EC_POINT_get_affine_coordinates(group, P, x, y, ctx)))
goto err;
TEST_info("NIST curve P-521 -- Generator");
test_output_bignum("x", x);
test_output_bignum("y", y);
/* G_y value taken from the standard: */
if (!TEST_true(BN_hex2bn(&z, "118"
"39296A789A3BC0045C8A5FB42C7D1BD9"
"98F54449579B446817AFBD17273E662C"
"97EE72995EF42640C550B9013FAD0761"
"353C7086A272C24088BE94769FD16650"))
|| !TEST_BN_eq(y, z)
|| !TEST_true(BN_add(yplusone, y, BN_value_one()))
/*
* When (x, y) is on the curve, (x, y + 1) is, as it happens, not,
* and therefore setting the coordinates should fail.
*/
|| !TEST_false(EC_POINT_set_affine_coordinates(group, P, x, yplusone,
ctx))
|| !TEST_int_eq(EC_GROUP_get_degree(group), 521)
|| !group_order_tests(group)
/* more tests using the last curve */
/* Restore the point that got mangled in the (x, y + 1) test. */
|| !TEST_true(EC_POINT_set_affine_coordinates(group, P, x, y, ctx))
|| !TEST_true(EC_POINT_copy(Q, P))
|| !TEST_false(EC_POINT_is_at_infinity(group, Q))
|| !TEST_true(EC_POINT_dbl(group, P, P, ctx))
|| !TEST_int_gt(EC_POINT_is_on_curve(group, P, ctx), 0)
|| !TEST_true(EC_POINT_invert(group, Q, ctx)) /* P = -2Q */
|| !TEST_true(EC_POINT_add(group, R, P, Q, ctx))
|| !TEST_true(EC_POINT_add(group, R, R, Q, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, R)) /* R = P + 2Q */
|| !TEST_false(EC_POINT_is_at_infinity(group, Q)))
goto err;
#ifndef OPENSSL_NO_DEPRECATED_3_0
TEST_note("combined multiplication ...");
points[0] = Q;
points[1] = Q;
points[2] = Q;
points[3] = Q;
if (!TEST_true(EC_GROUP_get_order(group, z, ctx))
|| !TEST_true(BN_add(y, z, BN_value_one()))
|| !TEST_BN_even(y)
|| !TEST_true(BN_rshift1(y, y)))
goto err;
scalars[0] = y; /* (group order + 1)/2, so y*Q + y*Q = Q */
scalars[1] = y;
/* z is still the group order */
if (!TEST_true(EC_POINTs_mul(group, P, NULL, 2, points, scalars, ctx))
|| !TEST_true(EC_POINTs_mul(group, R, z, 2, points, scalars, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, P, R, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, R, Q, ctx))
|| !TEST_true(BN_rand(y, BN_num_bits(y), 0, 0))
|| !TEST_true(BN_add(z, z, y)))
goto err;
BN_set_negative(z, 1);
scalars[0] = y;
scalars[1] = z; /* z = -(order + y) */
if (!TEST_true(EC_POINTs_mul(group, P, NULL, 2, points, scalars, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, P))
|| !TEST_true(BN_rand(x, BN_num_bits(y) - 1, 0, 0))
|| !TEST_true(BN_add(z, x, y)))
goto err;
BN_set_negative(z, 1);
scalars[0] = x;
scalars[1] = y;
scalars[2] = z; /* z = -(x+y) */
if (!TEST_ptr(scalar3 = BN_new()))
goto err;
BN_zero(scalar3);
scalars[3] = scalar3;
if (!TEST_true(EC_POINTs_mul(group, P, NULL, 4, points, scalars, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, P)))
goto err;
#endif
TEST_note(" ok\n");
r = 1;
err:
BN_CTX_free(ctx);
BN_free(p);
BN_free(a);
BN_free(b);
EC_GROUP_free(group);
EC_POINT_free(P);
EC_POINT_free(Q);
EC_POINT_free(R);
BN_free(x);
BN_free(y);
BN_free(z);
BN_free(yplusone);
BN_free(scalar3);
return r;
}
#ifndef OPENSSL_NO_EC2M
static struct c2_curve_test {
const char *name;
const char *p;
const char *a;
const char *b;
const char *x;
const char *y;
int ybit;
const char *order;
const char *cof;
int degree;
} char2_curve_tests[] = {
/* Curve K-163 (FIPS PUB 186-2, App. 6) */
{
"NIST curve K-163",
"0800000000000000000000000000000000000000C9",
"1",
"1",
"02FE13C0537BBC11ACAA07D793DE4E6D5E5C94EEE8",
"0289070FB05D38FF58321F2E800536D538CCDAA3D9",
1, "04000000000000000000020108A2E0CC0D99F8A5EF", "2", 163
},
/* Curve B-163 (FIPS PUB 186-2, App. 6) */
{
"NIST curve B-163",
"0800000000000000000000000000000000000000C9",
"1",
"020A601907B8C953CA1481EB10512F78744A3205FD",
"03F0EBA16286A2D57EA0991168D4994637E8343E36",
"00D51FBC6C71A0094FA2CDD545B11C5C0C797324F1",
1, "040000000000000000000292FE77E70C12A4234C33", "2", 163
},
/* Curve K-233 (FIPS PUB 186-2, App. 6) */
{
"NIST curve K-233",
"020000000000000000000000000000000000000004000000000000000001",
"0",
"1",
"017232BA853A7E731AF129F22FF4149563A419C26BF50A4C9D6EEFAD6126",
"01DB537DECE819B7F70F555A67C427A8CD9BF18AEB9B56E0C11056FAE6A3",
0,
"008000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF",
"4", 233
},
/* Curve B-233 (FIPS PUB 186-2, App. 6) */
{
"NIST curve B-233",
"020000000000000000000000000000000000000004000000000000000001",
"000000000000000000000000000000000000000000000000000000000001",
"0066647EDE6C332C7F8C0923BB58213B333B20E9CE4281FE115F7D8F90AD",
"00FAC9DFCBAC8313BB2139F1BB755FEF65BC391F8B36F8F8EB7371FD558B",
"01006A08A41903350678E58528BEBF8A0BEFF867A7CA36716F7E01F81052",
1,
"01000000000000000000000000000013E974E72F8A6922031D2603CFE0D7",
"2", 233
},
/* Curve K-283 (FIPS PUB 186-2, App. 6) */
{
"NIST curve K-283",
"08000000"
"00000000000000000000000000000000000000000000000000000000000010A1",
"0",
"1",
"0503213F"
"78CA44883F1A3B8162F188E553CD265F23C1567A16876913B0C2AC2458492836",
"01CCDA38"
"0F1C9E318D90F95D07E5426FE87E45C0E8184698E45962364E34116177DD2259",
0,
"01FFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265DFF7F94451E061E163C61",
"4", 283
},
/* Curve B-283 (FIPS PUB 186-2, App. 6) */
{
"NIST curve B-283",
"08000000"
"00000000000000000000000000000000000000000000000000000000000010A1",
"00000000"
"0000000000000000000000000000000000000000000000000000000000000001",
"027B680A"
"C8B8596DA5A4AF8A19A0303FCA97FD7645309FA2A581485AF6263E313B79A2F5",
"05F93925"
"8DB7DD90E1934F8C70B0DFEC2EED25B8557EAC9C80E2E198F8CDBECD86B12053",
"03676854"
"FE24141CB98FE6D4B20D02B4516FF702350EDDB0826779C813F0DF45BE8112F4",
1,
"03FFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFEF90399660FC938A90165B042A7CEFADB307",
"2", 283
},
/* Curve K-409 (FIPS PUB 186-2, App. 6) */
{
"NIST curve K-409",
"0200000000000000000000000000000000000000"
"0000000000000000000000000000000000000000008000000000000000000001",
"0",
"1",
"0060F05F658F49C1AD3AB1890F7184210EFD0987"
"E307C84C27ACCFB8F9F67CC2C460189EB5AAAA62EE222EB1B35540CFE9023746",
"01E369050B7C4E42ACBA1DACBF04299C3460782F"
"918EA427E6325165E9EA10E3DA5F6C42E9C55215AA9CA27A5863EC48D8E0286B",
1,
"007FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFE5F83B2D4EA20400EC4557D5ED3E3E7CA5B4B5C83B8E01E5FCF",
"4", 409
},
/* Curve B-409 (FIPS PUB 186-2, App. 6) */
{
"NIST curve B-409",
"0200000000000000000000000000000000000000"
"0000000000000000000000000000000000000000008000000000000000000001",
"0000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000001",
"0021A5C2C8EE9FEB5C4B9A753B7B476B7FD6422E"
"F1F3DD674761FA99D6AC27C8A9A197B272822F6CD57A55AA4F50AE317B13545F",
"015D4860D088DDB3496B0C6064756260441CDE4A"
"F1771D4DB01FFE5B34E59703DC255A868A1180515603AEAB60794E54BB7996A7",
"0061B1CFAB6BE5F32BBFA78324ED106A7636B9C5"
"A7BD198D0158AA4F5488D08F38514F1FDF4B4F40D2181B3681C364BA0273C706",
1,
"0100000000000000000000000000000000000000"
"00000000000001E2AAD6A612F33307BE5FA47C3C9E052F838164CD37D9A21173",
"2", 409
},
/* Curve K-571 (FIPS PUB 186-2, App. 6) */
{
"NIST curve K-571",
"800000000000000"
"0000000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000425",
"0",
"1",
"026EB7A859923FBC"
"82189631F8103FE4AC9CA2970012D5D46024804801841CA44370958493B205E6"
"47DA304DB4CEB08CBBD1BA39494776FB988B47174DCA88C7E2945283A01C8972",
"0349DC807F4FBF37"
"4F4AEADE3BCA95314DD58CEC9F307A54FFC61EFC006D8A2C9D4979C0AC44AEA7"
"4FBEBBB9F772AEDCB620B01A7BA7AF1B320430C8591984F601CD4C143EF1C7A3",
0,
"0200000000000000"
"00000000000000000000000000000000000000000000000000000000131850E1"
"F19A63E4B391A8DB917F4138B630D84BE5D639381E91DEB45CFE778F637C1001",
"4", 571
},
/* Curve B-571 (FIPS PUB 186-2, App. 6) */
{
"NIST curve B-571",
"800000000000000"
"0000000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000425",
"0000000000000000"
"0000000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000001",
"02F40E7E2221F295"
"DE297117B7F3D62F5C6A97FFCB8CEFF1CD6BA8CE4A9A18AD84FFABBD8EFA5933"
"2BE7AD6756A66E294AFD185A78FF12AA520E4DE739BACA0C7FFEFF7F2955727A",
"0303001D34B85629"
"6C16C0D40D3CD7750A93D1D2955FA80AA5F40FC8DB7B2ABDBDE53950F4C0D293"
"CDD711A35B67FB1499AE60038614F1394ABFA3B4C850D927E1E7769C8EEC2D19",
"037BF27342DA639B"
"6DCCFFFEB73D69D78C6C27A6009CBBCA1980F8533921E8A684423E43BAB08A57"
"6291AF8F461BB2A8B3531D2F0485C19B16E2F1516E23DD3C1A4827AF1B8AC15B",
1,
"03FFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE661CE18"
"FF55987308059B186823851EC7DD9CA1161DE93D5174D66E8382E9BB2FE84E47",
"2", 571
}
};
static int char2_curve_test(int n)
{
int r = 0;
BN_CTX *ctx = NULL;
BIGNUM *p = NULL, *a = NULL, *b = NULL;
BIGNUM *x = NULL, *y = NULL, *z = NULL, *cof = NULL, *yplusone = NULL;
EC_GROUP *group = NULL;
EC_POINT *P = NULL, *Q = NULL, *R = NULL;
# ifndef OPENSSL_NO_DEPRECATED_3_0
const EC_POINT *points[3];
const BIGNUM *scalars[3];
# endif
struct c2_curve_test *const test = char2_curve_tests + n;
if (!TEST_ptr(ctx = BN_CTX_new())
|| !TEST_ptr(p = BN_new())
|| !TEST_ptr(a = BN_new())
|| !TEST_ptr(b = BN_new())
|| !TEST_ptr(x = BN_new())
|| !TEST_ptr(y = BN_new())
|| !TEST_ptr(z = BN_new())
|| !TEST_ptr(yplusone = BN_new())
|| !TEST_true(BN_hex2bn(&p, test->p))
|| !TEST_true(BN_hex2bn(&a, test->a))
|| !TEST_true(BN_hex2bn(&b, test->b))
|| !TEST_true(group = EC_GROUP_new_curve_GF2m(p, a, b, ctx))
|| !TEST_ptr(P = EC_POINT_new(group))
|| !TEST_ptr(Q = EC_POINT_new(group))
|| !TEST_ptr(R = EC_POINT_new(group))
|| !TEST_true(BN_hex2bn(&x, test->x))
|| !TEST_true(BN_hex2bn(&y, test->y))
|| !TEST_true(BN_add(yplusone, y, BN_value_one())))
goto err;
/* Change test based on whether binary point compression is enabled or not. */
# ifdef OPENSSL_EC_BIN_PT_COMP
/*
* When (x, y) is on the curve, (x, y + 1) is, as it happens, not,
* and therefore setting the coordinates should fail.
*/
if (!TEST_false(EC_POINT_set_affine_coordinates(group, P, x, yplusone, ctx))
|| !TEST_true(EC_POINT_set_compressed_coordinates(group, P, x,
test->y_bit,
ctx))
|| !TEST_int_gt(EC_POINT_is_on_curve(group, P, ctx), 0)
|| !TEST_true(BN_hex2bn(&z, test->order))
|| !TEST_true(BN_hex2bn(&cof, test->cof))
|| !TEST_true(EC_GROUP_set_generator(group, P, z, cof))
|| !TEST_true(EC_POINT_get_affine_coordinates(group, P, x, y, ctx)))
goto err;
TEST_info("%s -- Generator", test->name);
test_output_bignum("x", x);
test_output_bignum("y", y);
/* G_y value taken from the standard: */
if (!TEST_true(BN_hex2bn(&z, test->y))
|| !TEST_BN_eq(y, z))
goto err;
# else
/*
* When (x, y) is on the curve, (x, y + 1) is, as it happens, not,
* and therefore setting the coordinates should fail.
*/
if (!TEST_false(EC_POINT_set_affine_coordinates(group, P, x, yplusone, ctx))
|| !TEST_true(EC_POINT_set_affine_coordinates(group, P, x, y, ctx))
|| !TEST_int_gt(EC_POINT_is_on_curve(group, P, ctx), 0)
|| !TEST_true(BN_hex2bn(&z, test->order))
|| !TEST_true(BN_hex2bn(&cof, test->cof))
|| !TEST_true(EC_GROUP_set_generator(group, P, z, cof)))
goto err;
TEST_info("%s -- Generator:", test->name);
test_output_bignum("x", x);
test_output_bignum("y", y);
# endif
if (!TEST_int_eq(EC_GROUP_get_degree(group), test->degree)
|| !group_order_tests(group))
goto err;
/* more tests using the last curve */
if (n == OSSL_NELEM(char2_curve_tests) - 1) {
if (!TEST_true(EC_POINT_set_affine_coordinates(group, P, x, y, ctx))
|| !TEST_true(EC_POINT_copy(Q, P))
|| !TEST_false(EC_POINT_is_at_infinity(group, Q))
|| !TEST_true(EC_POINT_dbl(group, P, P, ctx))
|| !TEST_int_gt(EC_POINT_is_on_curve(group, P, ctx), 0)
|| !TEST_true(EC_POINT_invert(group, Q, ctx)) /* P = -2Q */
|| !TEST_true(EC_POINT_add(group, R, P, Q, ctx))
|| !TEST_true(EC_POINT_add(group, R, R, Q, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, R)) /* R = P + 2Q */
|| !TEST_false(EC_POINT_is_at_infinity(group, Q)))
goto err;
# ifndef OPENSSL_NO_DEPRECATED_3_0
TEST_note("combined multiplication ...");
points[0] = Q;
points[1] = Q;
points[2] = Q;
if (!TEST_true(BN_add(y, z, BN_value_one()))
|| !TEST_BN_even(y)
|| !TEST_true(BN_rshift1(y, y)))
goto err;
scalars[0] = y; /* (group order + 1)/2, so y*Q + y*Q = Q */
scalars[1] = y;
/* z is still the group order */
if (!TEST_true(EC_POINTs_mul(group, P, NULL, 2, points, scalars, ctx))
|| !TEST_true(EC_POINTs_mul(group, R, z, 2, points, scalars, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, P, R, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, R, Q, ctx)))
goto err;
if (!TEST_true(BN_rand(y, BN_num_bits(y), 0, 0))
|| !TEST_true(BN_add(z, z, y)))
goto err;
BN_set_negative(z, 1);
scalars[0] = y;
scalars[1] = z; /* z = -(order + y) */
if (!TEST_true(EC_POINTs_mul(group, P, NULL, 2, points, scalars, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, P)))
goto err;
if (!TEST_true(BN_rand(x, BN_num_bits(y) - 1, 0, 0))
|| !TEST_true(BN_add(z, x, y)))
goto err;
BN_set_negative(z, 1);
scalars[0] = x;
scalars[1] = y;
scalars[2] = z; /* z = -(x+y) */
if (!TEST_true(EC_POINTs_mul(group, P, NULL, 3, points, scalars, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, P)))
goto err;
# endif
}
r = 1;
err:
BN_CTX_free(ctx);
BN_free(p);
BN_free(a);
BN_free(b);
BN_free(x);
BN_free(y);
BN_free(z);
BN_free(yplusone);
BN_free(cof);
EC_POINT_free(P);
EC_POINT_free(Q);
EC_POINT_free(R);
EC_GROUP_free(group);
return r;
}
static int char2_field_tests(void)
{
BN_CTX *ctx = NULL;
BIGNUM *p = NULL, *a = NULL, *b = NULL;
EC_GROUP *group = NULL;
EC_POINT *P = NULL, *Q = NULL, *R = NULL;
BIGNUM *x = NULL, *y = NULL, *z = NULL, *cof = NULL, *yplusone = NULL;
unsigned char buf[100];
size_t len;
int k, r = 0;
if (!TEST_ptr(ctx = BN_CTX_new())
|| !TEST_ptr(p = BN_new())
|| !TEST_ptr(a = BN_new())
|| !TEST_ptr(b = BN_new())
|| !TEST_true(BN_hex2bn(&p, "13"))
|| !TEST_true(BN_hex2bn(&a, "3"))
|| !TEST_true(BN_hex2bn(&b, "1")))
goto err;
if (!TEST_ptr(group = EC_GROUP_new_curve_GF2m(p, a, b, ctx))
|| !TEST_true(EC_GROUP_get_curve(group, p, a, b, ctx)))
goto err;
TEST_info("Curve defined by Weierstrass equation");
TEST_note(" y^2 + x*y = x^3 + a*x^2 + b (mod p)");
test_output_bignum("a", a);
test_output_bignum("b", b);
test_output_bignum("p", p);
if (!TEST_ptr(P = EC_POINT_new(group))
|| !TEST_ptr(Q = EC_POINT_new(group))
|| !TEST_ptr(R = EC_POINT_new(group))
|| !TEST_true(EC_POINT_set_to_infinity(group, P))
|| !TEST_true(EC_POINT_is_at_infinity(group, P)))
goto err;
buf[0] = 0;
if (!TEST_true(EC_POINT_oct2point(group, Q, buf, 1, ctx))
|| !TEST_true(EC_POINT_add(group, P, P, Q, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, P))
|| !TEST_ptr(x = BN_new())
|| !TEST_ptr(y = BN_new())
|| !TEST_ptr(z = BN_new())
|| !TEST_ptr(cof = BN_new())
|| !TEST_ptr(yplusone = BN_new())
|| !TEST_true(BN_hex2bn(&x, "6"))
/* Change test based on whether binary point compression is enabled or not. */
# ifdef OPENSSL_EC_BIN_PT_COMP
|| !TEST_true(EC_POINT_set_compressed_coordinates(group, Q, x, 1, ctx))
# else
|| !TEST_true(BN_hex2bn(&y, "8"))
|| !TEST_true(EC_POINT_set_affine_coordinates(group, Q, x, y, ctx))
# endif
)
goto err;
if (!TEST_int_gt(EC_POINT_is_on_curve(group, Q, ctx), 0)) {
/* Change test based on whether binary point compression is enabled or not. */
# ifdef OPENSSL_EC_BIN_PT_COMP
if (!TEST_true(EC_POINT_get_affine_coordinates(group, Q, x, y, ctx)))
goto err;
# endif
TEST_info("Point is not on curve");
test_output_bignum("x", x);
test_output_bignum("y", y);
goto err;
}
TEST_note("A cyclic subgroup:");
k = 100;
do {
if (!TEST_int_ne(k--, 0))
goto err;
if (EC_POINT_is_at_infinity(group, P))
TEST_note(" point at infinity");
else {
if (!TEST_true(EC_POINT_get_affine_coordinates(group, P, x, y,
ctx)))
goto err;
test_output_bignum("x", x);
test_output_bignum("y", y);
}
if (!TEST_true(EC_POINT_copy(R, P))
|| !TEST_true(EC_POINT_add(group, P, P, Q, ctx)))
goto err;
}
while (!EC_POINT_is_at_infinity(group, P));
if (!TEST_true(EC_POINT_add(group, P, Q, R, ctx))
|| !TEST_true(EC_POINT_is_at_infinity(group, P)))
goto err;
/* Change test based on whether binary point compression is enabled or not. */
# ifdef OPENSSL_EC_BIN_PT_COMP
len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_COMPRESSED,
buf, sizeof(buf), ctx);
if (!TEST_size_t_ne(len, 0)
|| !TEST_true(EC_POINT_oct2point(group, P, buf, len, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, P, Q, ctx)))
goto err;
test_output_memory("Generator as octet string, compressed form:",
buf, len);
# endif
len = EC_POINT_point2oct(group, Q, POINT_CONVERSION_UNCOMPRESSED,
buf, sizeof(buf), ctx);
if (!TEST_size_t_ne(len, 0)
|| !TEST_true(EC_POINT_oct2point(group, P, buf, len, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, P, Q, ctx)))
goto err;
test_output_memory("Generator as octet string, uncompressed form:",
buf, len);
/* Change test based on whether binary point compression is enabled or not. */
# ifdef OPENSSL_EC_BIN_PT_COMP
len =
EC_POINT_point2oct(group, Q, POINT_CONVERSION_HYBRID, buf, sizeof(buf),
ctx);
if (!TEST_size_t_ne(len, 0)
|| !TEST_true(EC_POINT_oct2point(group, P, buf, len, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, P, Q, ctx)))
goto err;
test_output_memory("Generator as octet string, hybrid form:",
buf, len);
# endif
if (!TEST_true(EC_POINT_invert(group, P, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, P, R, ctx)))
goto err;
TEST_note("\n");
r = 1;
err:
BN_CTX_free(ctx);
BN_free(p);
BN_free(a);
BN_free(b);
EC_GROUP_free(group);
EC_POINT_free(P);
EC_POINT_free(Q);
EC_POINT_free(R);
BN_free(x);
BN_free(y);
BN_free(z);
BN_free(cof);
BN_free(yplusone);
return r;
}
#endif
static int internal_curve_test(int n)
{
EC_GROUP *group = NULL;
int nid = curves[n].nid;
if (!TEST_ptr(group = EC_GROUP_new_by_curve_name(nid))) {
TEST_info("EC_GROUP_new_curve_name() failed with curve %s\n",
OBJ_nid2sn(nid));
return 0;
}
if (!TEST_true(EC_GROUP_check(group, NULL))) {
TEST_info("EC_GROUP_check() failed with curve %s\n", OBJ_nid2sn(nid));
EC_GROUP_free(group);
return 0;
}
EC_GROUP_free(group);
return 1;
}
static int internal_curve_test_method(int n)
{
int r, nid = curves[n].nid;
EC_GROUP *group;
if (!TEST_ptr(group = EC_GROUP_new_by_curve_name(nid))) {
TEST_info("Curve %s failed\n", OBJ_nid2sn(nid));
return 0;
}
r = group_order_tests(group);
EC_GROUP_free(group);
return r;
}
static int group_field_test(void)
{
int r = 1;
BIGNUM *secp521r1_field = NULL;
BIGNUM *sect163r2_field = NULL;
EC_GROUP *secp521r1_group = NULL;
EC_GROUP *sect163r2_group = NULL;
BN_hex2bn(&secp521r1_field,
"01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
"FFFF");
BN_hex2bn(&sect163r2_field,
"08000000000000000000000000000000"
"00000000C9");
secp521r1_group = EC_GROUP_new_by_curve_name(NID_secp521r1);
if (BN_cmp(secp521r1_field, EC_GROUP_get0_field(secp521r1_group)))
r = 0;
# ifndef OPENSSL_NO_EC2M
sect163r2_group = EC_GROUP_new_by_curve_name(NID_sect163r2);
if (BN_cmp(sect163r2_field, EC_GROUP_get0_field(sect163r2_group)))
r = 0;
# endif
EC_GROUP_free(secp521r1_group);
EC_GROUP_free(sect163r2_group);
BN_free(secp521r1_field);
BN_free(sect163r2_field);
return r;
}
/*
* nistp_test_params contains magic numbers for testing
* several NIST curves with characteristic > 3.
*/
struct nistp_test_params {
const int nid;
int degree;
/*
* Qx, Qy and D are taken from
* http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/ECDSA_Prime.pdf
* Otherwise, values are standard curve parameters from FIPS 180-3
*/
const char *p, *a, *b, *Qx, *Qy, *Gx, *Gy, *order, *d;
};
static const struct nistp_test_params nistp_tests_params[] = {
{
/* P-224 */
NID_secp224r1,
224,
/* p */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001",
/* a */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE",
/* b */
"B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4",
/* Qx */
"E84FB0B8E7000CB657D7973CF6B42ED78B301674276DF744AF130B3E",
/* Qy */
"4376675C6FC5612C21A0FF2D2A89D2987DF7A2BC52183B5982298555",
/* Gx */
"B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21",
/* Gy */
"BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34",
/* order */
"FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D",
/* d */
"3F0C488E987C80BE0FEE521F8D90BE6034EC69AE11CA72AA777481E8",
},
{
/* P-256 */
NID_X9_62_prime256v1,
256,
/* p */
"ffffffff00000001000000000000000000000000ffffffffffffffffffffffff",
/* a */
"ffffffff00000001000000000000000000000000fffffffffffffffffffffffc",
/* b */
"5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",
/* Qx */
"b7e08afdfe94bad3f1dc8c734798ba1c62b3a0ad1e9ea2a38201cd0889bc7a19",
/* Qy */
"3603f747959dbf7a4bb226e41928729063adc7ae43529e61b563bbc606cc5e09",
/* Gx */
"6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",
/* Gy */
"4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5",
/* order */
"ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551",
/* d */
"c477f9f65c22cce20657faa5b2d1d8122336f851a508a1ed04e479c34985bf96",
},
{
/* P-521 */
NID_secp521r1,
521,
/* p */
"1ff"
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
/* a */
"1ff"
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc",
/* b */
"051"
"953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e1"
"56193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00",
/* Qx */
"0098"
"e91eef9a68452822309c52fab453f5f117c1da8ed796b255e9ab8f6410cca16e"
"59df403a6bdc6ca467a37056b1e54b3005d8ac030decfeb68df18b171885d5c4",
/* Qy */
"0164"
"350c321aecfc1cca1ba4364c9b15656150b4b78d6a48d7d28e7f31985ef17be8"
"554376b72900712c4b83ad668327231526e313f5f092999a4632fd50d946bc2e",
/* Gx */
"c6"
"858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dba"
"a14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66",
/* Gy */
"118"
"39296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c"
"97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650",
/* order */
"1ff"
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa"
"51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409",
/* d */
"0100"
"085f47b8e1b8b11b7eb33028c0b2888e304bfc98501955b45bba1478dc184eee"
"df09b86a5f7c21994406072787205e69a63709fe35aa93ba333514b24f961722",
},
};
static int nistp_single_test(int idx)
{
const struct nistp_test_params *test = nistp_tests_params + idx;
BN_CTX *ctx = NULL;
BIGNUM *p = NULL, *a = NULL, *b = NULL, *x = NULL, *y = NULL;
BIGNUM *n = NULL, *m = NULL, *order = NULL, *yplusone = NULL;
EC_GROUP *NISTP = NULL;
EC_POINT *G = NULL, *P = NULL, *Q = NULL, *Q_CHECK = NULL;
int r = 0;
TEST_note("NIST curve P-%d (optimised implementation):",
test->degree);
if (!TEST_ptr(ctx = BN_CTX_new())
|| !TEST_ptr(p = BN_new())
|| !TEST_ptr(a = BN_new())
|| !TEST_ptr(b = BN_new())
|| !TEST_ptr(x = BN_new())
|| !TEST_ptr(y = BN_new())
|| !TEST_ptr(m = BN_new())
|| !TEST_ptr(n = BN_new())
|| !TEST_ptr(order = BN_new())
|| !TEST_ptr(yplusone = BN_new())
|| !TEST_ptr(NISTP = EC_GROUP_new_by_curve_name(test->nid))
|| !TEST_true(BN_hex2bn(&p, test->p))
|| !TEST_int_eq(1, BN_check_prime(p, ctx, NULL))
|| !TEST_true(BN_hex2bn(&a, test->a))
|| !TEST_true(BN_hex2bn(&b, test->b))
|| !TEST_true(EC_GROUP_set_curve(NISTP, p, a, b, ctx))
|| !TEST_ptr(G = EC_POINT_new(NISTP))
|| !TEST_ptr(P = EC_POINT_new(NISTP))
|| !TEST_ptr(Q = EC_POINT_new(NISTP))
|| !TEST_ptr(Q_CHECK = EC_POINT_new(NISTP))
|| !TEST_true(BN_hex2bn(&x, test->Qx))
|| !TEST_true(BN_hex2bn(&y, test->Qy))
|| !TEST_true(BN_add(yplusone, y, BN_value_one()))
/*
* When (x, y) is on the curve, (x, y + 1) is, as it happens, not,
* and therefore setting the coordinates should fail.
*/
|| !TEST_false(EC_POINT_set_affine_coordinates(NISTP, Q_CHECK, x,
yplusone, ctx))
|| !TEST_true(EC_POINT_set_affine_coordinates(NISTP, Q_CHECK, x, y,
ctx))
|| !TEST_true(BN_hex2bn(&x, test->Gx))
|| !TEST_true(BN_hex2bn(&y, test->Gy))
|| !TEST_true(EC_POINT_set_affine_coordinates(NISTP, G, x, y, ctx))
|| !TEST_true(BN_hex2bn(&order, test->order))
|| !TEST_true(EC_GROUP_set_generator(NISTP, G, order, BN_value_one()))
|| !TEST_int_eq(EC_GROUP_get_degree(NISTP), test->degree))
goto err;
TEST_note("NIST test vectors ... ");
if (!TEST_true(BN_hex2bn(&n, test->d)))
goto err;
/* fixed point multiplication */
EC_POINT_mul(NISTP, Q, n, NULL, NULL, ctx);
if (!TEST_int_eq(0, EC_POINT_cmp(NISTP, Q, Q_CHECK, ctx)))
goto err;
/* random point multiplication */
EC_POINT_mul(NISTP, Q, NULL, G, n, ctx);
if (!TEST_int_eq(0, EC_POINT_cmp(NISTP, Q, Q_CHECK, ctx))
/* set generator to P = 2*G, where G is the standard generator */
|| !TEST_true(EC_POINT_dbl(NISTP, P, G, ctx))
|| !TEST_true(EC_GROUP_set_generator(NISTP, P, order, BN_value_one()))
/* set the scalar to m=n/2, where n is the NIST test scalar */
|| !TEST_true(BN_rshift(m, n, 1)))
goto err;
/* test the non-standard generator */
/* fixed point multiplication */
EC_POINT_mul(NISTP, Q, m, NULL, NULL, ctx);
if (!TEST_int_eq(0, EC_POINT_cmp(NISTP, Q, Q_CHECK, ctx)))
goto err;
/* random point multiplication */
EC_POINT_mul(NISTP, Q, NULL, P, m, ctx);
if (!TEST_int_eq(0, EC_POINT_cmp(NISTP, Q, Q_CHECK, ctx))
#ifndef OPENSSL_NO_DEPRECATED_3_0
/* We have not performed precomp so this should be false */
|| !TEST_false(EC_GROUP_have_precompute_mult(NISTP))
/* now repeat all tests with precomputation */
|| !TEST_true(EC_GROUP_precompute_mult(NISTP, ctx))
#endif
)
goto err;
/* fixed point multiplication */
EC_POINT_mul(NISTP, Q, m, NULL, NULL, ctx);
if (!TEST_int_eq(0, EC_POINT_cmp(NISTP, Q, Q_CHECK, ctx)))
goto err;
/* random point multiplication */
EC_POINT_mul(NISTP, Q, NULL, P, m, ctx);
if (!TEST_int_eq(0, EC_POINT_cmp(NISTP, Q, Q_CHECK, ctx))
/* reset generator */
|| !TEST_true(EC_GROUP_set_generator(NISTP, G, order, BN_value_one())))
goto err;
/* fixed point multiplication */
EC_POINT_mul(NISTP, Q, n, NULL, NULL, ctx);
if (!TEST_int_eq(0, EC_POINT_cmp(NISTP, Q, Q_CHECK, ctx)))
goto err;
/* random point multiplication */
EC_POINT_mul(NISTP, Q, NULL, G, n, ctx);
if (!TEST_int_eq(0, EC_POINT_cmp(NISTP, Q, Q_CHECK, ctx)))
goto err;
/* regression test for felem_neg bug */
if (!TEST_true(BN_set_word(m, 32))
|| !TEST_true(BN_set_word(n, 31))
|| !TEST_true(EC_POINT_copy(P, G))
|| !TEST_true(EC_POINT_invert(NISTP, P, ctx))
|| !TEST_true(EC_POINT_mul(NISTP, Q, m, P, n, ctx))
|| !TEST_int_eq(0, EC_POINT_cmp(NISTP, Q, G, ctx)))
goto err;
r = 1;
err:
EC_GROUP_free(NISTP);
EC_POINT_free(G);
EC_POINT_free(P);
EC_POINT_free(Q);
EC_POINT_free(Q_CHECK);
BN_free(n);
BN_free(m);
BN_free(p);
BN_free(a);
BN_free(b);
BN_free(x);
BN_free(y);
BN_free(order);
BN_free(yplusone);
BN_CTX_free(ctx);
return r;
}
static const unsigned char p521_named[] = {
0x06, 0x05, 0x2b, 0x81, 0x04, 0x00, 0x23,
};
static const unsigned char p521_explicit[] = {
0x30, 0x82, 0x01, 0xc3, 0x02, 0x01, 0x01, 0x30, 0x4d, 0x06, 0x07, 0x2a,
0x86, 0x48, 0xce, 0x3d, 0x01, 0x01, 0x02, 0x42, 0x01, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0x30, 0x81, 0x9f, 0x04, 0x42, 0x01, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xfc, 0x04, 0x42, 0x00, 0x51, 0x95, 0x3e, 0xb9, 0x61, 0x8e, 0x1c, 0x9a,
0x1f, 0x92, 0x9a, 0x21, 0xa0, 0xb6, 0x85, 0x40, 0xee, 0xa2, 0xda, 0x72,
0x5b, 0x99, 0xb3, 0x15, 0xf3, 0xb8, 0xb4, 0x89, 0x91, 0x8e, 0xf1, 0x09,
0xe1, 0x56, 0x19, 0x39, 0x51, 0xec, 0x7e, 0x93, 0x7b, 0x16, 0x52, 0xc0,
0xbd, 0x3b, 0xb1, 0xbf, 0x07, 0x35, 0x73, 0xdf, 0x88, 0x3d, 0x2c, 0x34,
0xf1, 0xef, 0x45, 0x1f, 0xd4, 0x6b, 0x50, 0x3f, 0x00, 0x03, 0x15, 0x00,
0xd0, 0x9e, 0x88, 0x00, 0x29, 0x1c, 0xb8, 0x53, 0x96, 0xcc, 0x67, 0x17,
0x39, 0x32, 0x84, 0xaa, 0xa0, 0xda, 0x64, 0xba, 0x04, 0x81, 0x85, 0x04,
0x00, 0xc6, 0x85, 0x8e, 0x06, 0xb7, 0x04, 0x04, 0xe9, 0xcd, 0x9e, 0x3e,
0xcb, 0x66, 0x23, 0x95, 0xb4, 0x42, 0x9c, 0x64, 0x81, 0x39, 0x05, 0x3f,
0xb5, 0x21, 0xf8, 0x28, 0xaf, 0x60, 0x6b, 0x4d, 0x3d, 0xba, 0xa1, 0x4b,
0x5e, 0x77, 0xef, 0xe7, 0x59, 0x28, 0xfe, 0x1d, 0xc1, 0x27, 0xa2, 0xff,
0xa8, 0xde, 0x33, 0x48, 0xb3, 0xc1, 0x85, 0x6a, 0x42, 0x9b, 0xf9, 0x7e,
0x7e, 0x31, 0xc2, 0xe5, 0xbd, 0x66, 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78,
0x9a, 0x3b, 0xc0, 0x04, 0x5c, 0x8a, 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9,
0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17,
0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee, 0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40,
0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86,
0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe, 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50,
0x02, 0x42, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfa,
0x51, 0x86, 0x87, 0x83, 0xbf, 0x2f, 0x96, 0x6b, 0x7f, 0xcc, 0x01, 0x48,
0xf7, 0x09, 0xa5, 0xd0, 0x3b, 0xb5, 0xc9, 0xb8, 0x89, 0x9c, 0x47, 0xae,
0xbb, 0x6f, 0xb7, 0x1e, 0x91, 0x38, 0x64, 0x09, 0x02, 0x01, 0x01,
};
/*
* This test validates a named curve's group parameters using
* EC_GROUP_check_named_curve(). It also checks that modifying any of the
* group parameters results in the curve not being valid.
*/
static int check_named_curve_test(int id)
{
int ret = 0, nid, field_nid, has_seed;
EC_GROUP *group = NULL, *gtest = NULL;
const EC_POINT *group_gen = NULL;
EC_POINT *other_gen = NULL;
BIGNUM *group_p = NULL, *group_a = NULL, *group_b = NULL;
BIGNUM *other_p = NULL, *other_a = NULL, *other_b = NULL;
BIGNUM *group_cofactor = NULL, *other_cofactor = NULL;
BIGNUM *other_order = NULL;
const BIGNUM *group_order = NULL;
BN_CTX *bn_ctx = NULL;
static const unsigned char invalid_seed[] = "THIS IS NOT A VALID SEED";
static size_t invalid_seed_len = sizeof(invalid_seed);
/* Do some setup */
nid = curves[id].nid;
if (!TEST_ptr(bn_ctx = BN_CTX_new())
|| !TEST_ptr(group = EC_GROUP_new_by_curve_name(nid))
|| !TEST_ptr(gtest = EC_GROUP_dup(group))
|| !TEST_ptr(group_p = BN_new())
|| !TEST_ptr(group_a = BN_new())
|| !TEST_ptr(group_b = BN_new())
|| !TEST_ptr(group_cofactor = BN_new())
|| !TEST_ptr(group_gen = EC_GROUP_get0_generator(group))
|| !TEST_ptr(group_order = EC_GROUP_get0_order(group))
|| !TEST_true(EC_GROUP_get_cofactor(group, group_cofactor, NULL))
|| !TEST_true(EC_GROUP_get_curve(group, group_p, group_a, group_b, NULL))
|| !TEST_ptr(other_gen = EC_POINT_dup(group_gen, group))
|| !TEST_true(EC_POINT_add(group, other_gen, group_gen, group_gen, NULL))
|| !TEST_ptr(other_order = BN_dup(group_order))
|| !TEST_true(BN_add_word(other_order, 1))
|| !TEST_ptr(other_a = BN_dup(group_a))
|| !TEST_true(BN_add_word(other_a, 1))
|| !TEST_ptr(other_b = BN_dup(group_b))
|| !TEST_true(BN_add_word(other_b, 1))
|| !TEST_ptr(other_cofactor = BN_dup(group_cofactor))
|| !TEST_true(BN_add_word(other_cofactor, 1)))
goto err;
/* Determine if the built-in curve has a seed field set */
has_seed = (EC_GROUP_get_seed_len(group) > 0);
field_nid = EC_GROUP_get_field_type(group);
if (field_nid == NID_X9_62_characteristic_two_field) {
if (!TEST_ptr(other_p = BN_dup(group_p))
|| !TEST_true(BN_lshift1(other_p, other_p)))
goto err;
} else {
if (!TEST_ptr(other_p = BN_dup(group_p)))
goto err;
/*
* Just choosing any arbitrary prime does not work..
* Setting p via ec_GFp_nist_group_set_curve() needs the prime to be a
* nist prime. So only select one of these as an alternate prime.
*/
if (!TEST_ptr(BN_copy(other_p,
BN_ucmp(BN_get0_nist_prime_192(), other_p) == 0 ?
BN_get0_nist_prime_256() :
BN_get0_nist_prime_192())))
goto err;
}
/* Passes because this is a valid curve */
if (!TEST_int_eq(EC_GROUP_check_named_curve(group, 0, NULL), nid)
/* Only NIST curves pass */
|| !TEST_int_eq(EC_GROUP_check_named_curve(group, 1, NULL),
EC_curve_nid2nist(nid) != NULL ? nid : NID_undef))
goto err;
/* Fail if the curve name doesn't match the parameters */
EC_GROUP_set_curve_name(group, nid + 1);
ERR_set_mark();
if (!TEST_int_le(EC_GROUP_check_named_curve(group, 0, NULL), 0))
goto err;
ERR_pop_to_mark();
/* Restore curve name and ensure it's passing */
EC_GROUP_set_curve_name(group, nid);
if (!TEST_int_eq(EC_GROUP_check_named_curve(group, 0, NULL), nid))
goto err;
if (!TEST_int_eq(EC_GROUP_set_seed(group, invalid_seed, invalid_seed_len),
invalid_seed_len))
goto err;
if (has_seed) {
/*
* If the built-in curve has a seed and we set the seed to another value
* then it will fail the check.
*/
if (!TEST_int_eq(EC_GROUP_check_named_curve(group, 0, NULL), 0))
goto err;
} else {
/*
* If the built-in curve does not have a seed then setting the seed will
* pass the check (as the seed is optional).
*/
if (!TEST_int_eq(EC_GROUP_check_named_curve(group, 0, NULL), nid))
goto err;
}
/* Pass if the seed is unknown (as it is optional) */
if (!TEST_int_eq(EC_GROUP_set_seed(group, NULL, 0), 1)
|| !TEST_int_eq(EC_GROUP_check_named_curve(group, 0, NULL), nid))
goto err;
/* Check that a duped group passes */
if (!TEST_int_eq(EC_GROUP_check_named_curve(gtest, 0, NULL), nid))
goto err;
/* check that changing any generator parameter fails */
if (!TEST_true(EC_GROUP_set_generator(gtest, other_gen, group_order,
group_cofactor))
|| !TEST_int_eq(EC_GROUP_check_named_curve(gtest, 0, NULL), 0)
|| !TEST_true(EC_GROUP_set_generator(gtest, group_gen, other_order,
group_cofactor))
|| !TEST_int_eq(EC_GROUP_check_named_curve(gtest, 0, NULL), 0)
/* The order is not an optional field, so this should fail */
|| !TEST_false(EC_GROUP_set_generator(gtest, group_gen, NULL,
group_cofactor))
|| !TEST_true(EC_GROUP_set_generator(gtest, group_gen, group_order,
other_cofactor))
|| !TEST_int_eq(EC_GROUP_check_named_curve(gtest, 0, NULL), 0)
/* Check that if the cofactor is not set then it still passes */
|| !TEST_true(EC_GROUP_set_generator(gtest, group_gen, group_order,
NULL))
|| !TEST_int_eq(EC_GROUP_check_named_curve(gtest, 0, NULL), nid)
/* check that restoring the generator passes */
|| !TEST_true(EC_GROUP_set_generator(gtest, group_gen, group_order,
group_cofactor))
|| !TEST_int_eq(EC_GROUP_check_named_curve(gtest, 0, NULL), nid))
goto err;
/*
* check that changing any curve parameter fails
*
* Setting arbitrary p, a or b might fail for some EC_GROUPs
* depending on the internal EC_METHOD implementation, hence run
* these tests conditionally to the success of EC_GROUP_set_curve().
*/
ERR_set_mark();
if (EC_GROUP_set_curve(gtest, other_p, group_a, group_b, NULL)) {
if (!TEST_int_le(EC_GROUP_check_named_curve(gtest, 0, NULL), 0))
goto err;
} else {
/* clear the error stack if EC_GROUP_set_curve() failed */
ERR_pop_to_mark();
ERR_set_mark();
}
if (EC_GROUP_set_curve(gtest, group_p, other_a, group_b, NULL)) {
if (!TEST_int_le(EC_GROUP_check_named_curve(gtest, 0, NULL), 0))
goto err;
} else {
/* clear the error stack if EC_GROUP_set_curve() failed */
ERR_pop_to_mark();
ERR_set_mark();
}
if (EC_GROUP_set_curve(gtest, group_p, group_a, other_b, NULL)) {
if (!TEST_int_le(EC_GROUP_check_named_curve(gtest, 0, NULL), 0))
goto err;
} else {
/* clear the error stack if EC_GROUP_set_curve() failed */
ERR_pop_to_mark();
ERR_set_mark();
}
ERR_pop_to_mark();
/* Check that restoring the curve parameters passes */
if (!TEST_true(EC_GROUP_set_curve(gtest, group_p, group_a, group_b, NULL))
|| !TEST_int_eq(EC_GROUP_check_named_curve(gtest, 0, NULL), nid))
goto err;
ret = 1;
err:
BN_free(group_p);
BN_free(other_p);
BN_free(group_a);
BN_free(other_a);
BN_free(group_b);
BN_free(other_b);
BN_free(group_cofactor);
BN_free(other_cofactor);
BN_free(other_order);
EC_POINT_free(other_gen);
EC_GROUP_free(gtest);
EC_GROUP_free(group);
BN_CTX_free(bn_ctx);
return ret;
}
/*
* This checks the lookup capability of EC_GROUP_check_named_curve()
* when the given group was created with explicit parameters.
*
* It is possible to retrieve an alternative alias that does not match
* the original nid in this case.
*/
static int check_named_curve_lookup_test(int id)
{
int ret = 0, nid, rv = 0;
EC_GROUP *g = NULL , *ga = NULL;
ECPARAMETERS *p = NULL, *pa = NULL;
BN_CTX *ctx = NULL;
/* Do some setup */
nid = curves[id].nid;
if (!TEST_ptr(ctx = BN_CTX_new())
|| !TEST_ptr(g = EC_GROUP_new_by_curve_name(nid))
|| !TEST_ptr(p = EC_GROUP_get_ecparameters(g, NULL)))
goto err;
/* replace with group from explicit parameters */
EC_GROUP_free(g);
if (!TEST_ptr(g = EC_GROUP_new_from_ecparameters(p)))
goto err;
if (!TEST_int_gt(rv = EC_GROUP_check_named_curve(g, 0, NULL), 0))
goto err;
if (rv != nid) {
/*
* Found an alias:
* fail if the returned nid is not an alias of the original group.
*
* The comparison here is done by comparing two explicit
* parameter EC_GROUPs with EC_GROUP_cmp(), to ensure the
* comparison happens with unnamed EC_GROUPs using the same
* EC_METHODs.
*/
if (!TEST_ptr(ga = EC_GROUP_new_by_curve_name(rv))
|| !TEST_ptr(pa = EC_GROUP_get_ecparameters(ga, NULL)))
goto err;
/* replace with group from explicit parameters, then compare */
EC_GROUP_free(ga);
if (!TEST_ptr(ga = EC_GROUP_new_from_ecparameters(pa))
|| !TEST_int_eq(EC_GROUP_cmp(g, ga, ctx), 0))
goto err;
}
ret = 1;
err:
EC_GROUP_free(g);
EC_GROUP_free(ga);
ECPARAMETERS_free(p);
ECPARAMETERS_free(pa);
BN_CTX_free(ctx);
return ret;
}
[ec] Match built-in curves on EC_GROUP_new_from_ecparameters Description ----------- Upon `EC_GROUP_new_from_ecparameters()` check if the parameters match any of the built-in curves. If that is the case, return a new `EC_GROUP_new_by_curve_name()` object instead of the explicit parameters `EC_GROUP`. This affects all users of `EC_GROUP_new_from_ecparameters()`: - direct calls to `EC_GROUP_new_from_ecparameters()` - direct calls to `EC_GROUP_new_from_ecpkparameters()` with an explicit parameters argument - ASN.1 parsing of explicit parameters keys (as it eventually ends up calling `EC_GROUP_new_from_ecpkparameters()`) A parsed explicit parameter key will still be marked with the `OPENSSL_EC_EXPLICIT_CURVE` ASN.1 flag on load, so, unless programmatically forced otherwise, if the key is eventually serialized the output will still be encoded with explicit parameters, even if internally it is treated as a named curve `EC_GROUP`. Before this change, creating any `EC_GROUP` object using `EC_GROUP_new_from_ecparameters()`, yielded an object associated with the default generic `EC_METHOD`, but this was never guaranteed in the documentation. After this commit, users of the library that intentionally want to create an `EC_GROUP` object using a specific `EC_METHOD` can still explicitly call `EC_GROUP_new(foo_method)` and then manually set the curve parameters using `EC_GROUP_set_*()`. Motivation ---------- This has obvious performance benefits for the built-in curves with specialized `EC_METHOD`s and subtle but important security benefits: - the specialized methods have better security hardening than the generic implementations - optional fields in the parameter encoding, like the `cofactor`, cannot be leveraged by an attacker to force execution of the less secure code-paths for single point scalar multiplication - in general, this leads to reducing the attack surface Check the manuscript at https://arxiv.org/abs/1909.01785 for an in depth analysis of the issues related to this commit. It should be noted that `libssl` does not allow to negotiate explicit parameters (as per RFC 8422), so it is not directly affected by the consequences of using explicit parameters that this commit fixes. On the other hand, we detected external applications and users in the wild that use explicit parameters by default (and sometimes using 0 as the cofactor value, which is technically not a valid value per the specification, but is tolerated by parsers for wider compatibility given that the field is optional). These external users of `libcrypto` are exposed to these vulnerabilities and their security will benefit from this commit. Related commits --------------- While this commit is beneficial for users using built-in curves and explicit parameters encoding for serialized keys, commit b783beeadf6b80bc431e6f3230b5d5585c87ef87 (and its equivalents for the 1.0.2, 1.1.0 and 1.1.1 stable branches) fixes the consequences of the invalid cofactor values more in general also for other curves (CVE-2019-1547). The following list covers commits in `master` that are related to the vulnerabilities presented in the manuscript motivating this commit: - d2baf88c43 [crypto/rsa] Set the constant-time flag in multi-prime RSA too - 311e903d84 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation. - b783beeadf [crypto/ec] for ECC parameters with NULL or zero cofactor, compute it - 724339ff44 Fix SCA vulnerability when using PVK and MSBLOB key formats Note that the PRs that contributed the listed commits also include other commits providing related testing and documentation, in addition to links to PRs and commits backporting the fixes to the 1.0.2, 1.1.0 and 1.1.1 branches. Responsible Disclosure ---------------------- This and the other issues presented in https://arxiv.org/abs/1909.01785 were reported by Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin, Alejandro Cabrera Aldaya and Billy Bob Brumley from the NISEC group at Tampere University, FINLAND. The OpenSSL Security Team evaluated the security risk for this vulnerability as low, and encouraged to propose fixes using public Pull Requests. _______________________________________________________________________________ Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/9808)
2019-09-07 15:05:31 +00:00
/*
* Sometime we cannot compare nids for equality, as the built-in curve table
* includes aliases with different names for the same curve.
*
* This function returns TRUE (1) if the checked nids are identical, or if they
* alias to the same curve. FALSE (0) otherwise.
*/
static ossl_inline
int are_ec_nids_compatible(int n1d, int n2d)
{
int ret = 0;
switch (n1d) {
#ifndef OPENSSL_NO_EC2M
[ec] Match built-in curves on EC_GROUP_new_from_ecparameters Description ----------- Upon `EC_GROUP_new_from_ecparameters()` check if the parameters match any of the built-in curves. If that is the case, return a new `EC_GROUP_new_by_curve_name()` object instead of the explicit parameters `EC_GROUP`. This affects all users of `EC_GROUP_new_from_ecparameters()`: - direct calls to `EC_GROUP_new_from_ecparameters()` - direct calls to `EC_GROUP_new_from_ecpkparameters()` with an explicit parameters argument - ASN.1 parsing of explicit parameters keys (as it eventually ends up calling `EC_GROUP_new_from_ecpkparameters()`) A parsed explicit parameter key will still be marked with the `OPENSSL_EC_EXPLICIT_CURVE` ASN.1 flag on load, so, unless programmatically forced otherwise, if the key is eventually serialized the output will still be encoded with explicit parameters, even if internally it is treated as a named curve `EC_GROUP`. Before this change, creating any `EC_GROUP` object using `EC_GROUP_new_from_ecparameters()`, yielded an object associated with the default generic `EC_METHOD`, but this was never guaranteed in the documentation. After this commit, users of the library that intentionally want to create an `EC_GROUP` object using a specific `EC_METHOD` can still explicitly call `EC_GROUP_new(foo_method)` and then manually set the curve parameters using `EC_GROUP_set_*()`. Motivation ---------- This has obvious performance benefits for the built-in curves with specialized `EC_METHOD`s and subtle but important security benefits: - the specialized methods have better security hardening than the generic implementations - optional fields in the parameter encoding, like the `cofactor`, cannot be leveraged by an attacker to force execution of the less secure code-paths for single point scalar multiplication - in general, this leads to reducing the attack surface Check the manuscript at https://arxiv.org/abs/1909.01785 for an in depth analysis of the issues related to this commit. It should be noted that `libssl` does not allow to negotiate explicit parameters (as per RFC 8422), so it is not directly affected by the consequences of using explicit parameters that this commit fixes. On the other hand, we detected external applications and users in the wild that use explicit parameters by default (and sometimes using 0 as the cofactor value, which is technically not a valid value per the specification, but is tolerated by parsers for wider compatibility given that the field is optional). These external users of `libcrypto` are exposed to these vulnerabilities and their security will benefit from this commit. Related commits --------------- While this commit is beneficial for users using built-in curves and explicit parameters encoding for serialized keys, commit b783beeadf6b80bc431e6f3230b5d5585c87ef87 (and its equivalents for the 1.0.2, 1.1.0 and 1.1.1 stable branches) fixes the consequences of the invalid cofactor values more in general also for other curves (CVE-2019-1547). The following list covers commits in `master` that are related to the vulnerabilities presented in the manuscript motivating this commit: - d2baf88c43 [crypto/rsa] Set the constant-time flag in multi-prime RSA too - 311e903d84 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation. - b783beeadf [crypto/ec] for ECC parameters with NULL or zero cofactor, compute it - 724339ff44 Fix SCA vulnerability when using PVK and MSBLOB key formats Note that the PRs that contributed the listed commits also include other commits providing related testing and documentation, in addition to links to PRs and commits backporting the fixes to the 1.0.2, 1.1.0 and 1.1.1 branches. Responsible Disclosure ---------------------- This and the other issues presented in https://arxiv.org/abs/1909.01785 were reported by Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin, Alejandro Cabrera Aldaya and Billy Bob Brumley from the NISEC group at Tampere University, FINLAND. The OpenSSL Security Team evaluated the security risk for this vulnerability as low, and encouraged to propose fixes using public Pull Requests. _______________________________________________________________________________ Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/9808)
2019-09-07 15:05:31 +00:00
case NID_sect113r1:
case NID_wap_wsg_idm_ecid_wtls4:
ret = (n2d == NID_sect113r1 || n2d == NID_wap_wsg_idm_ecid_wtls4);
break;
case NID_sect163k1:
case NID_wap_wsg_idm_ecid_wtls3:
ret = (n2d == NID_sect163k1 || n2d == NID_wap_wsg_idm_ecid_wtls3);
break;
case NID_sect233k1:
case NID_wap_wsg_idm_ecid_wtls10:
ret = (n2d == NID_sect233k1 || n2d == NID_wap_wsg_idm_ecid_wtls10);
break;
case NID_sect233r1:
case NID_wap_wsg_idm_ecid_wtls11:
ret = (n2d == NID_sect233r1 || n2d == NID_wap_wsg_idm_ecid_wtls11);
break;
case NID_X9_62_c2pnb163v1:
case NID_wap_wsg_idm_ecid_wtls5:
ret = (n2d == NID_X9_62_c2pnb163v1
|| n2d == NID_wap_wsg_idm_ecid_wtls5);
break;
#endif /* OPENSSL_NO_EC2M */
[ec] Match built-in curves on EC_GROUP_new_from_ecparameters Description ----------- Upon `EC_GROUP_new_from_ecparameters()` check if the parameters match any of the built-in curves. If that is the case, return a new `EC_GROUP_new_by_curve_name()` object instead of the explicit parameters `EC_GROUP`. This affects all users of `EC_GROUP_new_from_ecparameters()`: - direct calls to `EC_GROUP_new_from_ecparameters()` - direct calls to `EC_GROUP_new_from_ecpkparameters()` with an explicit parameters argument - ASN.1 parsing of explicit parameters keys (as it eventually ends up calling `EC_GROUP_new_from_ecpkparameters()`) A parsed explicit parameter key will still be marked with the `OPENSSL_EC_EXPLICIT_CURVE` ASN.1 flag on load, so, unless programmatically forced otherwise, if the key is eventually serialized the output will still be encoded with explicit parameters, even if internally it is treated as a named curve `EC_GROUP`. Before this change, creating any `EC_GROUP` object using `EC_GROUP_new_from_ecparameters()`, yielded an object associated with the default generic `EC_METHOD`, but this was never guaranteed in the documentation. After this commit, users of the library that intentionally want to create an `EC_GROUP` object using a specific `EC_METHOD` can still explicitly call `EC_GROUP_new(foo_method)` and then manually set the curve parameters using `EC_GROUP_set_*()`. Motivation ---------- This has obvious performance benefits for the built-in curves with specialized `EC_METHOD`s and subtle but important security benefits: - the specialized methods have better security hardening than the generic implementations - optional fields in the parameter encoding, like the `cofactor`, cannot be leveraged by an attacker to force execution of the less secure code-paths for single point scalar multiplication - in general, this leads to reducing the attack surface Check the manuscript at https://arxiv.org/abs/1909.01785 for an in depth analysis of the issues related to this commit. It should be noted that `libssl` does not allow to negotiate explicit parameters (as per RFC 8422), so it is not directly affected by the consequences of using explicit parameters that this commit fixes. On the other hand, we detected external applications and users in the wild that use explicit parameters by default (and sometimes using 0 as the cofactor value, which is technically not a valid value per the specification, but is tolerated by parsers for wider compatibility given that the field is optional). These external users of `libcrypto` are exposed to these vulnerabilities and their security will benefit from this commit. Related commits --------------- While this commit is beneficial for users using built-in curves and explicit parameters encoding for serialized keys, commit b783beeadf6b80bc431e6f3230b5d5585c87ef87 (and its equivalents for the 1.0.2, 1.1.0 and 1.1.1 stable branches) fixes the consequences of the invalid cofactor values more in general also for other curves (CVE-2019-1547). The following list covers commits in `master` that are related to the vulnerabilities presented in the manuscript motivating this commit: - d2baf88c43 [crypto/rsa] Set the constant-time flag in multi-prime RSA too - 311e903d84 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation. - b783beeadf [crypto/ec] for ECC parameters with NULL or zero cofactor, compute it - 724339ff44 Fix SCA vulnerability when using PVK and MSBLOB key formats Note that the PRs that contributed the listed commits also include other commits providing related testing and documentation, in addition to links to PRs and commits backporting the fixes to the 1.0.2, 1.1.0 and 1.1.1 branches. Responsible Disclosure ---------------------- This and the other issues presented in https://arxiv.org/abs/1909.01785 were reported by Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin, Alejandro Cabrera Aldaya and Billy Bob Brumley from the NISEC group at Tampere University, FINLAND. The OpenSSL Security Team evaluated the security risk for this vulnerability as low, and encouraged to propose fixes using public Pull Requests. _______________________________________________________________________________ Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/9808)
2019-09-07 15:05:31 +00:00
case NID_secp112r1:
case NID_wap_wsg_idm_ecid_wtls6:
ret = (n2d == NID_secp112r1 || n2d == NID_wap_wsg_idm_ecid_wtls6);
break;
case NID_secp160r2:
case NID_wap_wsg_idm_ecid_wtls7:
ret = (n2d == NID_secp160r2 || n2d == NID_wap_wsg_idm_ecid_wtls7);
break;
#ifdef OPENSSL_NO_EC_NISTP_64_GCC_128
[ec] Match built-in curves on EC_GROUP_new_from_ecparameters Description ----------- Upon `EC_GROUP_new_from_ecparameters()` check if the parameters match any of the built-in curves. If that is the case, return a new `EC_GROUP_new_by_curve_name()` object instead of the explicit parameters `EC_GROUP`. This affects all users of `EC_GROUP_new_from_ecparameters()`: - direct calls to `EC_GROUP_new_from_ecparameters()` - direct calls to `EC_GROUP_new_from_ecpkparameters()` with an explicit parameters argument - ASN.1 parsing of explicit parameters keys (as it eventually ends up calling `EC_GROUP_new_from_ecpkparameters()`) A parsed explicit parameter key will still be marked with the `OPENSSL_EC_EXPLICIT_CURVE` ASN.1 flag on load, so, unless programmatically forced otherwise, if the key is eventually serialized the output will still be encoded with explicit parameters, even if internally it is treated as a named curve `EC_GROUP`. Before this change, creating any `EC_GROUP` object using `EC_GROUP_new_from_ecparameters()`, yielded an object associated with the default generic `EC_METHOD`, but this was never guaranteed in the documentation. After this commit, users of the library that intentionally want to create an `EC_GROUP` object using a specific `EC_METHOD` can still explicitly call `EC_GROUP_new(foo_method)` and then manually set the curve parameters using `EC_GROUP_set_*()`. Motivation ---------- This has obvious performance benefits for the built-in curves with specialized `EC_METHOD`s and subtle but important security benefits: - the specialized methods have better security hardening than the generic implementations - optional fields in the parameter encoding, like the `cofactor`, cannot be leveraged by an attacker to force execution of the less secure code-paths for single point scalar multiplication - in general, this leads to reducing the attack surface Check the manuscript at https://arxiv.org/abs/1909.01785 for an in depth analysis of the issues related to this commit. It should be noted that `libssl` does not allow to negotiate explicit parameters (as per RFC 8422), so it is not directly affected by the consequences of using explicit parameters that this commit fixes. On the other hand, we detected external applications and users in the wild that use explicit parameters by default (and sometimes using 0 as the cofactor value, which is technically not a valid value per the specification, but is tolerated by parsers for wider compatibility given that the field is optional). These external users of `libcrypto` are exposed to these vulnerabilities and their security will benefit from this commit. Related commits --------------- While this commit is beneficial for users using built-in curves and explicit parameters encoding for serialized keys, commit b783beeadf6b80bc431e6f3230b5d5585c87ef87 (and its equivalents for the 1.0.2, 1.1.0 and 1.1.1 stable branches) fixes the consequences of the invalid cofactor values more in general also for other curves (CVE-2019-1547). The following list covers commits in `master` that are related to the vulnerabilities presented in the manuscript motivating this commit: - d2baf88c43 [crypto/rsa] Set the constant-time flag in multi-prime RSA too - 311e903d84 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation. - b783beeadf [crypto/ec] for ECC parameters with NULL or zero cofactor, compute it - 724339ff44 Fix SCA vulnerability when using PVK and MSBLOB key formats Note that the PRs that contributed the listed commits also include other commits providing related testing and documentation, in addition to links to PRs and commits backporting the fixes to the 1.0.2, 1.1.0 and 1.1.1 branches. Responsible Disclosure ---------------------- This and the other issues presented in https://arxiv.org/abs/1909.01785 were reported by Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin, Alejandro Cabrera Aldaya and Billy Bob Brumley from the NISEC group at Tampere University, FINLAND. The OpenSSL Security Team evaluated the security risk for this vulnerability as low, and encouraged to propose fixes using public Pull Requests. _______________________________________________________________________________ Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/9808)
2019-09-07 15:05:31 +00:00
case NID_secp224r1:
case NID_wap_wsg_idm_ecid_wtls12:
ret = (n2d == NID_secp224r1 || n2d == NID_wap_wsg_idm_ecid_wtls12);
break;
#else
[ec] Match built-in curves on EC_GROUP_new_from_ecparameters Description ----------- Upon `EC_GROUP_new_from_ecparameters()` check if the parameters match any of the built-in curves. If that is the case, return a new `EC_GROUP_new_by_curve_name()` object instead of the explicit parameters `EC_GROUP`. This affects all users of `EC_GROUP_new_from_ecparameters()`: - direct calls to `EC_GROUP_new_from_ecparameters()` - direct calls to `EC_GROUP_new_from_ecpkparameters()` with an explicit parameters argument - ASN.1 parsing of explicit parameters keys (as it eventually ends up calling `EC_GROUP_new_from_ecpkparameters()`) A parsed explicit parameter key will still be marked with the `OPENSSL_EC_EXPLICIT_CURVE` ASN.1 flag on load, so, unless programmatically forced otherwise, if the key is eventually serialized the output will still be encoded with explicit parameters, even if internally it is treated as a named curve `EC_GROUP`. Before this change, creating any `EC_GROUP` object using `EC_GROUP_new_from_ecparameters()`, yielded an object associated with the default generic `EC_METHOD`, but this was never guaranteed in the documentation. After this commit, users of the library that intentionally want to create an `EC_GROUP` object using a specific `EC_METHOD` can still explicitly call `EC_GROUP_new(foo_method)` and then manually set the curve parameters using `EC_GROUP_set_*()`. Motivation ---------- This has obvious performance benefits for the built-in curves with specialized `EC_METHOD`s and subtle but important security benefits: - the specialized methods have better security hardening than the generic implementations - optional fields in the parameter encoding, like the `cofactor`, cannot be leveraged by an attacker to force execution of the less secure code-paths for single point scalar multiplication - in general, this leads to reducing the attack surface Check the manuscript at https://arxiv.org/abs/1909.01785 for an in depth analysis of the issues related to this commit. It should be noted that `libssl` does not allow to negotiate explicit parameters (as per RFC 8422), so it is not directly affected by the consequences of using explicit parameters that this commit fixes. On the other hand, we detected external applications and users in the wild that use explicit parameters by default (and sometimes using 0 as the cofactor value, which is technically not a valid value per the specification, but is tolerated by parsers for wider compatibility given that the field is optional). These external users of `libcrypto` are exposed to these vulnerabilities and their security will benefit from this commit. Related commits --------------- While this commit is beneficial for users using built-in curves and explicit parameters encoding for serialized keys, commit b783beeadf6b80bc431e6f3230b5d5585c87ef87 (and its equivalents for the 1.0.2, 1.1.0 and 1.1.1 stable branches) fixes the consequences of the invalid cofactor values more in general also for other curves (CVE-2019-1547). The following list covers commits in `master` that are related to the vulnerabilities presented in the manuscript motivating this commit: - d2baf88c43 [crypto/rsa] Set the constant-time flag in multi-prime RSA too - 311e903d84 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation. - b783beeadf [crypto/ec] for ECC parameters with NULL or zero cofactor, compute it - 724339ff44 Fix SCA vulnerability when using PVK and MSBLOB key formats Note that the PRs that contributed the listed commits also include other commits providing related testing and documentation, in addition to links to PRs and commits backporting the fixes to the 1.0.2, 1.1.0 and 1.1.1 branches. Responsible Disclosure ---------------------- This and the other issues presented in https://arxiv.org/abs/1909.01785 were reported by Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin, Alejandro Cabrera Aldaya and Billy Bob Brumley from the NISEC group at Tampere University, FINLAND. The OpenSSL Security Team evaluated the security risk for this vulnerability as low, and encouraged to propose fixes using public Pull Requests. _______________________________________________________________________________ Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/9808)
2019-09-07 15:05:31 +00:00
/*
* For SEC P-224 we want to ensure that the SECP nid is returned, as
* that is associated with a specialized method.
*/
case NID_wap_wsg_idm_ecid_wtls12:
ret = (n2d == NID_secp224r1);
break;
#endif /* def(OPENSSL_NO_EC_NISTP_64_GCC_128) */
[ec] Match built-in curves on EC_GROUP_new_from_ecparameters Description ----------- Upon `EC_GROUP_new_from_ecparameters()` check if the parameters match any of the built-in curves. If that is the case, return a new `EC_GROUP_new_by_curve_name()` object instead of the explicit parameters `EC_GROUP`. This affects all users of `EC_GROUP_new_from_ecparameters()`: - direct calls to `EC_GROUP_new_from_ecparameters()` - direct calls to `EC_GROUP_new_from_ecpkparameters()` with an explicit parameters argument - ASN.1 parsing of explicit parameters keys (as it eventually ends up calling `EC_GROUP_new_from_ecpkparameters()`) A parsed explicit parameter key will still be marked with the `OPENSSL_EC_EXPLICIT_CURVE` ASN.1 flag on load, so, unless programmatically forced otherwise, if the key is eventually serialized the output will still be encoded with explicit parameters, even if internally it is treated as a named curve `EC_GROUP`. Before this change, creating any `EC_GROUP` object using `EC_GROUP_new_from_ecparameters()`, yielded an object associated with the default generic `EC_METHOD`, but this was never guaranteed in the documentation. After this commit, users of the library that intentionally want to create an `EC_GROUP` object using a specific `EC_METHOD` can still explicitly call `EC_GROUP_new(foo_method)` and then manually set the curve parameters using `EC_GROUP_set_*()`. Motivation ---------- This has obvious performance benefits for the built-in curves with specialized `EC_METHOD`s and subtle but important security benefits: - the specialized methods have better security hardening than the generic implementations - optional fields in the parameter encoding, like the `cofactor`, cannot be leveraged by an attacker to force execution of the less secure code-paths for single point scalar multiplication - in general, this leads to reducing the attack surface Check the manuscript at https://arxiv.org/abs/1909.01785 for an in depth analysis of the issues related to this commit. It should be noted that `libssl` does not allow to negotiate explicit parameters (as per RFC 8422), so it is not directly affected by the consequences of using explicit parameters that this commit fixes. On the other hand, we detected external applications and users in the wild that use explicit parameters by default (and sometimes using 0 as the cofactor value, which is technically not a valid value per the specification, but is tolerated by parsers for wider compatibility given that the field is optional). These external users of `libcrypto` are exposed to these vulnerabilities and their security will benefit from this commit. Related commits --------------- While this commit is beneficial for users using built-in curves and explicit parameters encoding for serialized keys, commit b783beeadf6b80bc431e6f3230b5d5585c87ef87 (and its equivalents for the 1.0.2, 1.1.0 and 1.1.1 stable branches) fixes the consequences of the invalid cofactor values more in general also for other curves (CVE-2019-1547). The following list covers commits in `master` that are related to the vulnerabilities presented in the manuscript motivating this commit: - d2baf88c43 [crypto/rsa] Set the constant-time flag in multi-prime RSA too - 311e903d84 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation. - b783beeadf [crypto/ec] for ECC parameters with NULL or zero cofactor, compute it - 724339ff44 Fix SCA vulnerability when using PVK and MSBLOB key formats Note that the PRs that contributed the listed commits also include other commits providing related testing and documentation, in addition to links to PRs and commits backporting the fixes to the 1.0.2, 1.1.0 and 1.1.1 branches. Responsible Disclosure ---------------------- This and the other issues presented in https://arxiv.org/abs/1909.01785 were reported by Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin, Alejandro Cabrera Aldaya and Billy Bob Brumley from the NISEC group at Tampere University, FINLAND. The OpenSSL Security Team evaluated the security risk for this vulnerability as low, and encouraged to propose fixes using public Pull Requests. _______________________________________________________________________________ Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/9808)
2019-09-07 15:05:31 +00:00
default:
ret = (n1d == n2d);
}
return ret;
}
/*
* This checks that EC_GROUP_bew_from_ecparameters() returns a "named"
* EC_GROUP for built-in curves.
*
* Note that it is possible to retrieve an alternative alias that does not match
* the original nid.
*
* Ensure that the OPENSSL_EC_EXPLICIT_CURVE ASN1 flag is set.
*/
static int check_named_curve_from_ecparameters(int id)
{
int ret = 0, nid, tnid;
EC_GROUP *group = NULL, *tgroup = NULL, *tmpg = NULL;
const EC_POINT *group_gen = NULL;
EC_POINT *other_gen = NULL;
BIGNUM *group_cofactor = NULL, *other_cofactor = NULL;
BIGNUM *other_gen_x = NULL, *other_gen_y = NULL;
const BIGNUM *group_order = NULL;
BIGNUM *other_order = NULL;
BN_CTX *bn_ctx = NULL;
static const unsigned char invalid_seed[] = "THIS IS NOT A VALID SEED";
static size_t invalid_seed_len = sizeof(invalid_seed);
ECPARAMETERS *params = NULL, *other_params = NULL;
EC_GROUP *g_ary[8] = {NULL};
EC_GROUP **g_next = &g_ary[0];
ECPARAMETERS *p_ary[8] = {NULL};
ECPARAMETERS **p_next = &p_ary[0];
/* Do some setup */
nid = curves[id].nid;
TEST_note("Curve %s", OBJ_nid2sn(nid));
if (!TEST_ptr(bn_ctx = BN_CTX_new()))
return ret;
BN_CTX_start(bn_ctx);
if (/* Allocations */
!TEST_ptr(group_cofactor = BN_CTX_get(bn_ctx))
|| !TEST_ptr(other_gen_x = BN_CTX_get(bn_ctx))
|| !TEST_ptr(other_gen_y = BN_CTX_get(bn_ctx))
|| !TEST_ptr(other_order = BN_CTX_get(bn_ctx))
|| !TEST_ptr(other_cofactor = BN_CTX_get(bn_ctx))
/* Generate reference group and params */
|| !TEST_ptr(group = EC_GROUP_new_by_curve_name(nid))
|| !TEST_ptr(params = EC_GROUP_get_ecparameters(group, NULL))
|| !TEST_ptr(group_gen = EC_GROUP_get0_generator(group))
|| !TEST_ptr(group_order = EC_GROUP_get0_order(group))
|| !TEST_true(EC_GROUP_get_cofactor(group, group_cofactor, NULL))
/* compute `other_*` values */
|| !TEST_ptr(tmpg = EC_GROUP_dup(group))
|| !TEST_ptr(other_gen = EC_POINT_dup(group_gen, group))
|| !TEST_true(EC_POINT_add(group, other_gen, group_gen, group_gen, NULL))
|| !TEST_true(EC_POINT_get_affine_coordinates(group, other_gen,
other_gen_x, other_gen_y, bn_ctx))
|| !TEST_true(BN_copy(other_order, group_order))
|| !TEST_true(BN_add_word(other_order, 1))
|| !TEST_true(BN_copy(other_cofactor, group_cofactor))
|| !TEST_true(BN_add_word(other_cofactor, 1)))
goto err;
EC_POINT_free(other_gen);
other_gen = NULL;
if (!TEST_ptr(other_gen = EC_POINT_new(tmpg))
|| !TEST_true(EC_POINT_set_affine_coordinates(tmpg, other_gen,
other_gen_x, other_gen_y,
bn_ctx)))
goto err;
/*
* ###########################
* # Actual tests start here #
* ###########################
*/
/*
* Creating a group from built-in explicit parameters returns a
* "named" EC_GROUP
*/
if (!TEST_ptr(tgroup = *g_next++ = EC_GROUP_new_from_ecparameters(params))
|| !TEST_int_ne((tnid = EC_GROUP_get_curve_name(tgroup)), NID_undef))
goto err;
/*
* We cannot always guarantee the names match, as the built-in table
* contains aliases for the same curve with different names.
*/
if (!TEST_true(are_ec_nids_compatible(nid, tnid))) {
TEST_info("nid = %s, tnid = %s", OBJ_nid2sn(nid), OBJ_nid2sn(tnid));
goto err;
}
/* Ensure that the OPENSSL_EC_EXPLICIT_CURVE ASN1 flag is set. */
if (!TEST_int_eq(EC_GROUP_get_asn1_flag(tgroup), OPENSSL_EC_EXPLICIT_CURVE))
goto err;
/*
* An invalid seed in the parameters should be ignored: expect a "named"
* group.
*/
if (!TEST_int_eq(EC_GROUP_set_seed(tmpg, invalid_seed, invalid_seed_len),
invalid_seed_len)
|| !TEST_ptr(other_params = *p_next++ =
EC_GROUP_get_ecparameters(tmpg, NULL))
|| !TEST_ptr(tgroup = *g_next++ =
EC_GROUP_new_from_ecparameters(other_params))
|| !TEST_int_ne((tnid = EC_GROUP_get_curve_name(tgroup)), NID_undef)
|| !TEST_true(are_ec_nids_compatible(nid, tnid))
|| !TEST_int_eq(EC_GROUP_get_asn1_flag(tgroup),
OPENSSL_EC_EXPLICIT_CURVE)) {
TEST_info("nid = %s, tnid = %s", OBJ_nid2sn(nid), OBJ_nid2sn(tnid));
goto err;
}
/*
* A null seed in the parameters should be ignored, as it is optional:
* expect a "named" group.
*/
if (!TEST_int_eq(EC_GROUP_set_seed(tmpg, NULL, 0), 1)
|| !TEST_ptr(other_params = *p_next++ =
EC_GROUP_get_ecparameters(tmpg, NULL))
|| !TEST_ptr(tgroup = *g_next++ =
EC_GROUP_new_from_ecparameters(other_params))
|| !TEST_int_ne((tnid = EC_GROUP_get_curve_name(tgroup)), NID_undef)
|| !TEST_true(are_ec_nids_compatible(nid, tnid))
|| !TEST_int_eq(EC_GROUP_get_asn1_flag(tgroup),
OPENSSL_EC_EXPLICIT_CURVE)) {
TEST_info("nid = %s, tnid = %s", OBJ_nid2sn(nid), OBJ_nid2sn(tnid));
goto err;
}
/*
* Check that changing any of the generator parameters does not yield a
* match with the built-in curves
*/
if (/* Other gen, same group order & cofactor */
!TEST_true(EC_GROUP_set_generator(tmpg, other_gen, group_order,
group_cofactor))
|| !TEST_ptr(other_params = *p_next++ =
EC_GROUP_get_ecparameters(tmpg, NULL))
|| !TEST_ptr(tgroup = *g_next++ =
EC_GROUP_new_from_ecparameters(other_params))
|| !TEST_int_eq((tnid = EC_GROUP_get_curve_name(tgroup)), NID_undef)
/* Same gen & cofactor, different order */
|| !TEST_true(EC_GROUP_set_generator(tmpg, group_gen, other_order,
group_cofactor))
|| !TEST_ptr(other_params = *p_next++ =
EC_GROUP_get_ecparameters(tmpg, NULL))
|| !TEST_ptr(tgroup = *g_next++ =
EC_GROUP_new_from_ecparameters(other_params))
|| !TEST_int_eq((tnid = EC_GROUP_get_curve_name(tgroup)), NID_undef)
/* The order is not an optional field, so this should fail */
|| !TEST_false(EC_GROUP_set_generator(tmpg, group_gen, NULL,
group_cofactor))
/* Check that a wrong cofactor is ignored, and we still match */
|| !TEST_true(EC_GROUP_set_generator(tmpg, group_gen, group_order,
other_cofactor))
|| !TEST_ptr(other_params = *p_next++ =
EC_GROUP_get_ecparameters(tmpg, NULL))
|| !TEST_ptr(tgroup = *g_next++ =
EC_GROUP_new_from_ecparameters(other_params))
|| !TEST_int_ne((tnid = EC_GROUP_get_curve_name(tgroup)), NID_undef)
|| !TEST_true(are_ec_nids_compatible(nid, tnid))
|| !TEST_int_eq(EC_GROUP_get_asn1_flag(tgroup),
OPENSSL_EC_EXPLICIT_CURVE)
/* Check that if the cofactor is not set then it still matches */
|| !TEST_true(EC_GROUP_set_generator(tmpg, group_gen, group_order,
NULL))
|| !TEST_ptr(other_params = *p_next++ =
EC_GROUP_get_ecparameters(tmpg, NULL))
|| !TEST_ptr(tgroup = *g_next++ =
EC_GROUP_new_from_ecparameters(other_params))
|| !TEST_int_ne((tnid = EC_GROUP_get_curve_name(tgroup)), NID_undef)
|| !TEST_true(are_ec_nids_compatible(nid, tnid))
|| !TEST_int_eq(EC_GROUP_get_asn1_flag(tgroup),
OPENSSL_EC_EXPLICIT_CURVE)
/* check that restoring the generator passes */
|| !TEST_true(EC_GROUP_set_generator(tmpg, group_gen, group_order,
group_cofactor))
|| !TEST_ptr(other_params = *p_next++ =
EC_GROUP_get_ecparameters(tmpg, NULL))
|| !TEST_ptr(tgroup = *g_next++ =
EC_GROUP_new_from_ecparameters(other_params))
|| !TEST_int_ne((tnid = EC_GROUP_get_curve_name(tgroup)), NID_undef)
|| !TEST_true(are_ec_nids_compatible(nid, tnid))
|| !TEST_int_eq(EC_GROUP_get_asn1_flag(tgroup),
OPENSSL_EC_EXPLICIT_CURVE))
goto err;
ret = 1;
err:
for (g_next = &g_ary[0]; g_next < g_ary + OSSL_NELEM(g_ary); g_next++)
EC_GROUP_free(*g_next);
for (p_next = &p_ary[0]; p_next < p_ary + OSSL_NELEM(g_ary); p_next++)
ECPARAMETERS_free(*p_next);
ECPARAMETERS_free(params);
EC_POINT_free(other_gen);
EC_GROUP_free(tmpg);
EC_GROUP_free(group);
BN_CTX_end(bn_ctx);
BN_CTX_free(bn_ctx);
return ret;
}
static int parameter_test(void)
{
EC_GROUP *group = NULL, *group2 = NULL;
ECPARAMETERS *ecparameters = NULL;
unsigned char *buf = NULL;
int r = 0, len;
if (!TEST_ptr(group = EC_GROUP_new_by_curve_name(NID_secp384r1))
|| !TEST_ptr(ecparameters = EC_GROUP_get_ecparameters(group, NULL))
|| !TEST_ptr(group2 = EC_GROUP_new_from_ecparameters(ecparameters))
|| !TEST_int_eq(EC_GROUP_cmp(group, group2, NULL), 0))
goto err;
EC_GROUP_free(group);
group = NULL;
/* Test the named curve encoding, which should be default. */
if (!TEST_ptr(group = EC_GROUP_new_by_curve_name(NID_secp521r1))
|| !TEST_true((len = i2d_ECPKParameters(group, &buf)) >= 0)
|| !TEST_mem_eq(buf, len, p521_named, sizeof(p521_named)))
goto err;
OPENSSL_free(buf);
buf = NULL;
/*
* Test the explicit encoding. P-521 requires correctly zero-padding the
* curve coefficients.
*/
EC_GROUP_set_asn1_flag(group, OPENSSL_EC_EXPLICIT_CURVE);
if (!TEST_true((len = i2d_ECPKParameters(group, &buf)) >= 0)
|| !TEST_mem_eq(buf, len, p521_explicit, sizeof(p521_explicit)))
goto err;
r = 1;
err:
EC_GROUP_free(group);
EC_GROUP_free(group2);
ECPARAMETERS_free(ecparameters);
OPENSSL_free(buf);
return r;
}
/*-
* random 256-bit explicit parameters curve, cofactor absent
* order: 0x0c38d96a9f892b88772ec2e39614a82f4f (132 bit)
* cofactor: 0x12bc94785251297abfafddf1565100da (125 bit)
*/
static const unsigned char params_cf_pass[] = {
0x30, 0x81, 0xcd, 0x02, 0x01, 0x01, 0x30, 0x2c, 0x06, 0x07, 0x2a, 0x86,
0x48, 0xce, 0x3d, 0x01, 0x01, 0x02, 0x21, 0x00, 0xe5, 0x00, 0x1f, 0xc5,
0xca, 0x71, 0x9d, 0x8e, 0xf7, 0x07, 0x4b, 0x48, 0x37, 0xf9, 0x33, 0x2d,
0x71, 0xbf, 0x79, 0xe7, 0xdc, 0x91, 0xc2, 0xff, 0xb6, 0x7b, 0xc3, 0x93,
0x44, 0x88, 0xe6, 0x91, 0x30, 0x44, 0x04, 0x20, 0xe5, 0x00, 0x1f, 0xc5,
0xca, 0x71, 0x9d, 0x8e, 0xf7, 0x07, 0x4b, 0x48, 0x37, 0xf9, 0x33, 0x2d,
0x71, 0xbf, 0x79, 0xe7, 0xdc, 0x91, 0xc2, 0xff, 0xb6, 0x7b, 0xc3, 0x93,
0x44, 0x88, 0xe6, 0x8e, 0x04, 0x20, 0x18, 0x8c, 0x59, 0x57, 0xc4, 0xbc,
0x85, 0x57, 0xc3, 0x66, 0x9f, 0x89, 0xd5, 0x92, 0x0d, 0x7e, 0x42, 0x27,
0x07, 0x64, 0xaa, 0x26, 0xed, 0x89, 0xc4, 0x09, 0x05, 0x4d, 0xc7, 0x23,
0x47, 0xda, 0x04, 0x41, 0x04, 0x1b, 0x6b, 0x41, 0x0b, 0xf9, 0xfb, 0x77,
0xfd, 0x50, 0xb7, 0x3e, 0x23, 0xa3, 0xec, 0x9a, 0x3b, 0x09, 0x31, 0x6b,
0xfa, 0xf6, 0xce, 0x1f, 0xff, 0xeb, 0x57, 0x93, 0x24, 0x70, 0xf3, 0xf4,
0xba, 0x7e, 0xfa, 0x86, 0x6e, 0x19, 0x89, 0xe3, 0x55, 0x6d, 0x5a, 0xe9,
0xc0, 0x3d, 0xbc, 0xfb, 0xaf, 0xad, 0xd4, 0x7e, 0xa6, 0xe5, 0xfa, 0x1a,
0x58, 0x07, 0x9e, 0x8f, 0x0d, 0x3b, 0xf7, 0x38, 0xca, 0x02, 0x11, 0x0c,
0x38, 0xd9, 0x6a, 0x9f, 0x89, 0x2b, 0x88, 0x77, 0x2e, 0xc2, 0xe3, 0x96,
0x14, 0xa8, 0x2f, 0x4f
};
/*-
* random 256-bit explicit parameters curve, cofactor absent
* order: 0x045a75c0c17228ebd9b169a10e34a22101 (131 bit)
* cofactor: 0x2e134b4ede82649f67a2e559d361e5fe (126 bit)
*/
static const unsigned char params_cf_fail[] = {
0x30, 0x81, 0xcd, 0x02, 0x01, 0x01, 0x30, 0x2c, 0x06, 0x07, 0x2a, 0x86,
0x48, 0xce, 0x3d, 0x01, 0x01, 0x02, 0x21, 0x00, 0xc8, 0x95, 0x27, 0x37,
0xe8, 0xe1, 0xfd, 0xcc, 0xf9, 0x6e, 0x0c, 0xa6, 0x21, 0xc1, 0x7d, 0x6b,
0x9d, 0x44, 0x42, 0xea, 0x73, 0x4e, 0x04, 0xb6, 0xac, 0x62, 0x50, 0xd0,
0x33, 0xc2, 0xea, 0x13, 0x30, 0x44, 0x04, 0x20, 0xc8, 0x95, 0x27, 0x37,
0xe8, 0xe1, 0xfd, 0xcc, 0xf9, 0x6e, 0x0c, 0xa6, 0x21, 0xc1, 0x7d, 0x6b,
0x9d, 0x44, 0x42, 0xea, 0x73, 0x4e, 0x04, 0xb6, 0xac, 0x62, 0x50, 0xd0,
0x33, 0xc2, 0xea, 0x10, 0x04, 0x20, 0xbf, 0xa6, 0xa8, 0x05, 0x1d, 0x09,
0xac, 0x70, 0x39, 0xbb, 0x4d, 0xb2, 0x90, 0x8a, 0x15, 0x41, 0x14, 0x1d,
0x11, 0x86, 0x9f, 0x13, 0xa2, 0x63, 0x1a, 0xda, 0x95, 0x22, 0x4d, 0x02,
0x15, 0x0a, 0x04, 0x41, 0x04, 0xaf, 0x16, 0x71, 0xf9, 0xc4, 0xc8, 0x59,
0x1d, 0xa3, 0x6f, 0xe7, 0xc3, 0x57, 0xa1, 0xfa, 0x9f, 0x49, 0x7c, 0x11,
0x27, 0x05, 0xa0, 0x7f, 0xff, 0xf9, 0xe0, 0xe7, 0x92, 0xdd, 0x9c, 0x24,
0x8e, 0xc7, 0xb9, 0x52, 0x71, 0x3f, 0xbc, 0x7f, 0x6a, 0x9f, 0x35, 0x70,
0xe1, 0x27, 0xd5, 0x35, 0x8a, 0x13, 0xfa, 0xa8, 0x33, 0x3e, 0xd4, 0x73,
0x1c, 0x14, 0x58, 0x9e, 0xc7, 0x0a, 0x87, 0x65, 0x8d, 0x02, 0x11, 0x04,
0x5a, 0x75, 0xc0, 0xc1, 0x72, 0x28, 0xeb, 0xd9, 0xb1, 0x69, 0xa1, 0x0e,
0x34, 0xa2, 0x21, 0x01
};
/*-
* Test two random 256-bit explicit parameters curves with absent cofactor.
* The two curves are chosen to roughly straddle the bounds at which the lib
* can compute the cofactor automatically, roughly 4*sqrt(p). So test that:
*
* - params_cf_pass: order is sufficiently close to p to compute cofactor
* - params_cf_fail: order is too far away from p to compute cofactor
*
* For standards-compliant curves, cofactor is chosen as small as possible.
* So you can see neither of these curves are fit for cryptographic use.
*
* Some standards even mandate an upper bound on the cofactor, e.g. SECG1 v2:
* h <= 2**(t/8) where t is the security level of the curve, for which the lib
* will always succeed in computing the cofactor. Neither of these curves
* conform to that -- this is just robustness testing.
*/
static int cofactor_range_test(void)
{
EC_GROUP *group = NULL;
BIGNUM *cf = NULL;
int ret = 0;
const unsigned char *b1 = (const unsigned char *)params_cf_fail;
const unsigned char *b2 = (const unsigned char *)params_cf_pass;
if (!TEST_ptr(group = d2i_ECPKParameters(NULL, &b1, sizeof(params_cf_fail)))
|| !TEST_BN_eq_zero(EC_GROUP_get0_cofactor(group))
|| !TEST_ptr(group = d2i_ECPKParameters(&group, &b2,
sizeof(params_cf_pass)))
|| !TEST_int_gt(BN_hex2bn(&cf, "12bc94785251297abfafddf1565100da"), 0)
|| !TEST_BN_eq(cf, EC_GROUP_get0_cofactor(group)))
goto err;
ret = 1;
err:
BN_free(cf);
EC_GROUP_free(group);
return ret;
}
/*-
* For named curves, test that:
* - the lib correctly computes the cofactor if passed a NULL or zero cofactor
* - a nonsensical cofactor throws an error (negative test)
* - nonsensical orders throw errors (negative tests)
*/
static int cardinality_test(int n)
{
int ret = 0, is_binary = 0;
int nid = curves[n].nid;
BN_CTX *ctx = NULL;
EC_GROUP *g1 = NULL, *g2 = NULL;
EC_POINT *g2_gen = NULL;
BIGNUM *g1_p = NULL, *g1_a = NULL, *g1_b = NULL, *g1_x = NULL, *g1_y = NULL,
*g1_order = NULL, *g1_cf = NULL, *g2_cf = NULL;
TEST_info("Curve %s cardinality test", OBJ_nid2sn(nid));
if (!TEST_ptr(ctx = BN_CTX_new())
|| !TEST_ptr(g1 = EC_GROUP_new_by_curve_name(nid))) {
BN_CTX_free(ctx);
return 0;
}
is_binary = (EC_GROUP_get_field_type(g1) == NID_X9_62_characteristic_two_field);
BN_CTX_start(ctx);
g1_p = BN_CTX_get(ctx);
g1_a = BN_CTX_get(ctx);
g1_b = BN_CTX_get(ctx);
g1_x = BN_CTX_get(ctx);
g1_y = BN_CTX_get(ctx);
g1_order = BN_CTX_get(ctx);
g1_cf = BN_CTX_get(ctx);
if (!TEST_ptr(g2_cf = BN_CTX_get(ctx))
/* pull out the explicit curve parameters */
|| !TEST_true(EC_GROUP_get_curve(g1, g1_p, g1_a, g1_b, ctx))
|| !TEST_true(EC_POINT_get_affine_coordinates(g1,
EC_GROUP_get0_generator(g1), g1_x, g1_y, ctx))
|| !TEST_true(BN_copy(g1_order, EC_GROUP_get0_order(g1)))
|| !TEST_true(EC_GROUP_get_cofactor(g1, g1_cf, ctx))
/* construct g2 manually with g1 parameters */
#ifndef OPENSSL_NO_EC2M
|| !TEST_ptr(g2 = (is_binary) ?
EC_GROUP_new_curve_GF2m(g1_p, g1_a, g1_b, ctx) :
EC_GROUP_new_curve_GFp(g1_p, g1_a, g1_b, ctx))
#else
|| !TEST_int_eq(0, is_binary)
|| !TEST_ptr(g2 = EC_GROUP_new_curve_GFp(g1_p, g1_a, g1_b, ctx))
#endif
|| !TEST_ptr(g2_gen = EC_POINT_new(g2))
|| !TEST_true(EC_POINT_set_affine_coordinates(g2, g2_gen, g1_x, g1_y, ctx))
/* pass NULL cofactor: lib should compute it */
|| !TEST_true(EC_GROUP_set_generator(g2, g2_gen, g1_order, NULL))
|| !TEST_true(EC_GROUP_get_cofactor(g2, g2_cf, ctx))
|| !TEST_BN_eq(g1_cf, g2_cf)
/* pass zero cofactor: lib should compute it */
|| !TEST_true(BN_set_word(g2_cf, 0))
|| !TEST_true(EC_GROUP_set_generator(g2, g2_gen, g1_order, g2_cf))
|| !TEST_true(EC_GROUP_get_cofactor(g2, g2_cf, ctx))
|| !TEST_BN_eq(g1_cf, g2_cf)
/* negative test for invalid cofactor */
|| !TEST_true(BN_set_word(g2_cf, 0))
|| !TEST_true(BN_sub(g2_cf, g2_cf, BN_value_one()))
|| !TEST_false(EC_GROUP_set_generator(g2, g2_gen, g1_order, g2_cf))
/* negative test for NULL order */
|| !TEST_false(EC_GROUP_set_generator(g2, g2_gen, NULL, NULL))
/* negative test for zero order */
|| !TEST_true(BN_set_word(g1_order, 0))
|| !TEST_false(EC_GROUP_set_generator(g2, g2_gen, g1_order, NULL))
/* negative test for negative order */
|| !TEST_true(BN_set_word(g2_cf, 0))
|| !TEST_true(BN_sub(g2_cf, g2_cf, BN_value_one()))
|| !TEST_false(EC_GROUP_set_generator(g2, g2_gen, g1_order, NULL))
/* negative test for too large order */
|| !TEST_true(BN_lshift(g1_order, g1_p, 2))
|| !TEST_false(EC_GROUP_set_generator(g2, g2_gen, g1_order, NULL)))
goto err;
ret = 1;
err:
EC_POINT_free(g2_gen);
EC_GROUP_free(g1);
EC_GROUP_free(g2);
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return ret;
}
static int check_ec_key_field_public_range_test(int id)
{
int ret = 0, type = 0;
const EC_POINT *pub = NULL;
const EC_GROUP *group = NULL;
const BIGNUM *field = NULL;
BIGNUM *x = NULL, *y = NULL;
EC_KEY *key = NULL;
if (!TEST_ptr(x = BN_new())
|| !TEST_ptr(y = BN_new())
|| !TEST_ptr(key = EC_KEY_new_by_curve_name(curves[id].nid))
|| !TEST_ptr(group = EC_KEY_get0_group(key))
|| !TEST_ptr(field = EC_GROUP_get0_field(group))
|| !TEST_int_gt(EC_KEY_generate_key(key), 0)
|| !TEST_int_gt(EC_KEY_check_key(key), 0)
|| !TEST_ptr(pub = EC_KEY_get0_public_key(key))
|| !TEST_int_gt(EC_POINT_get_affine_coordinates(group, pub, x, y,
NULL), 0))
goto err;
/*
* Make the public point out of range by adding the field (which will still
* be the same point on the curve). The add is different for char2 fields.
*/
type = EC_GROUP_get_field_type(group);
#ifndef OPENSSL_NO_EC2M
if (type == NID_X9_62_characteristic_two_field) {
/* test for binary curves */
if (!TEST_true(BN_GF2m_add(x, x, field)))
goto err;
} else
#endif
if (type == NID_X9_62_prime_field) {
/* test for prime curves */
if (!TEST_true(BN_add(x, x, field)))
goto err;
} else {
/* this should never happen */
TEST_error("Unsupported EC_METHOD field_type");
goto err;
}
if (!TEST_int_le(EC_KEY_set_public_key_affine_coordinates(key, x, y), 0))
goto err;
ret = 1;
err:
BN_free(x);
BN_free(y);
EC_KEY_free(key);
return ret;
}
/*
* Helper for ec_point_hex2point_test
*
* Self-tests EC_POINT_point2hex() against EC_POINT_hex2point() for the given
* (group,P) pair.
*
* If P is NULL use point at infinity.
*/
static ossl_inline
int ec_point_hex2point_test_helper(const EC_GROUP *group, const EC_POINT *P,
point_conversion_form_t form,
BN_CTX *bnctx)
{
int ret = 0;
EC_POINT *Q = NULL, *Pinf = NULL;
char *hex = NULL;
if (P == NULL) {
/* If P is NULL use point at infinity. */
if (!TEST_ptr(Pinf = EC_POINT_new(group))
|| !TEST_true(EC_POINT_set_to_infinity(group, Pinf)))
goto err;
P = Pinf;
}
if (!TEST_ptr(hex = EC_POINT_point2hex(group, P, form, bnctx))
|| !TEST_ptr(Q = EC_POINT_hex2point(group, hex, NULL, bnctx))
|| !TEST_int_eq(0, EC_POINT_cmp(group, Q, P, bnctx)))
goto err;
/*
* The next check is most likely superfluous, as EC_POINT_cmp should already
* cover this.
* Nonetheless it increases the test coverage for EC_POINT_is_at_infinity,
* so we include it anyway!
*/
if (Pinf != NULL
&& !TEST_true(EC_POINT_is_at_infinity(group, Q)))
goto err;
ret = 1;
err:
EC_POINT_free(Pinf);
OPENSSL_free(hex);
EC_POINT_free(Q);
return ret;
}
/*
* This test self-validates EC_POINT_hex2point() and EC_POINT_point2hex()
*/
static int ec_point_hex2point_test(int id)
{
int ret = 0, nid;
EC_GROUP *group = NULL;
const EC_POINT *G = NULL;
EC_POINT *P = NULL;
BN_CTX * bnctx = NULL;
/* Do some setup */
nid = curves[id].nid;
if (!TEST_ptr(bnctx = BN_CTX_new())
|| !TEST_ptr(group = EC_GROUP_new_by_curve_name(nid))
|| !TEST_ptr(G = EC_GROUP_get0_generator(group))
|| !TEST_ptr(P = EC_POINT_dup(G, group)))
goto err;
if (!TEST_true(ec_point_hex2point_test_helper(group, P,
POINT_CONVERSION_COMPRESSED,
bnctx))
|| !TEST_true(ec_point_hex2point_test_helper(group, NULL,
POINT_CONVERSION_COMPRESSED,
bnctx))
|| !TEST_true(ec_point_hex2point_test_helper(group, P,
POINT_CONVERSION_UNCOMPRESSED,
bnctx))
|| !TEST_true(ec_point_hex2point_test_helper(group, NULL,
POINT_CONVERSION_UNCOMPRESSED,
bnctx))
|| !TEST_true(ec_point_hex2point_test_helper(group, P,
POINT_CONVERSION_HYBRID,
bnctx))
|| !TEST_true(ec_point_hex2point_test_helper(group, NULL,
POINT_CONVERSION_HYBRID,
bnctx)))
goto err;
ret = 1;
err:
EC_POINT_free(P);
EC_GROUP_free(group);
BN_CTX_free(bnctx);
return ret;
}
static int do_test_custom_explicit_fromdata(EC_GROUP *group, BN_CTX *ctx,
unsigned char *gen, int gen_size)
{
int ret = 0, i_out;
EVP_PKEY_CTX *pctx = NULL;
EVP_PKEY *pkeyparam = NULL;
OSSL_PARAM_BLD *bld = NULL;
const char *field_name;
OSSL_PARAM *params = NULL;
const OSSL_PARAM *gettable;
BIGNUM *p, *a, *b;
BIGNUM *p_out = NULL, *a_out = NULL, *b_out = NULL;
BIGNUM *order_out = NULL, *cofactor_out = NULL;
char name[80];
unsigned char buf[1024];
size_t buf_len, name_len;
#ifndef OPENSSL_NO_EC2M
unsigned int k1 = 0, k2 = 0, k3 = 0;
const char *basis_name = NULL;
#endif
p = BN_CTX_get(ctx);
a = BN_CTX_get(ctx);
b = BN_CTX_get(ctx);
if (!TEST_ptr(b)
|| !TEST_ptr(bld = OSSL_PARAM_BLD_new()))
goto err;
if (EC_GROUP_get_field_type(group) == NID_X9_62_prime_field) {
field_name = SN_X9_62_prime_field;
} else {
field_name = SN_X9_62_characteristic_two_field;
#ifndef OPENSSL_NO_EC2M
if (EC_GROUP_get_basis_type(group) == NID_X9_62_tpBasis) {
basis_name = SN_X9_62_tpBasis;
if (!TEST_true(EC_GROUP_get_trinomial_basis(group, &k1)))
goto err;
} else {
basis_name = SN_X9_62_ppBasis;
if (!TEST_true(EC_GROUP_get_pentanomial_basis(group, &k1, &k2, &k3)))
goto err;
}
#endif /* OPENSSL_NO_EC2M */
}
if (!TEST_true(EC_GROUP_get_curve(group, p, a, b, ctx))
|| !TEST_true(OSSL_PARAM_BLD_push_utf8_string(bld,
OSSL_PKEY_PARAM_EC_FIELD_TYPE, field_name, 0))
|| !TEST_true(OSSL_PARAM_BLD_push_BN(bld, OSSL_PKEY_PARAM_EC_P, p))
|| !TEST_true(OSSL_PARAM_BLD_push_BN(bld, OSSL_PKEY_PARAM_EC_A, a))
|| !TEST_true(OSSL_PARAM_BLD_push_BN(bld, OSSL_PKEY_PARAM_EC_B, b)))
goto err;
if (EC_GROUP_get0_seed(group) != NULL) {
if (!TEST_true(OSSL_PARAM_BLD_push_octet_string(bld,
OSSL_PKEY_PARAM_EC_SEED, EC_GROUP_get0_seed(group),
EC_GROUP_get_seed_len(group))))
goto err;
}
if (EC_GROUP_get0_cofactor(group) != NULL) {
if (!TEST_true(OSSL_PARAM_BLD_push_BN(bld, OSSL_PKEY_PARAM_EC_COFACTOR,
EC_GROUP_get0_cofactor(group))))
goto err;
}
if (!TEST_true(OSSL_PARAM_BLD_push_octet_string(bld,
OSSL_PKEY_PARAM_EC_GENERATOR, gen, gen_size))
|| !TEST_true(OSSL_PARAM_BLD_push_BN(bld, OSSL_PKEY_PARAM_EC_ORDER,
EC_GROUP_get0_order(group))))
goto err;
if (!TEST_ptr(params = OSSL_PARAM_BLD_to_param(bld))
|| !TEST_ptr(pctx = EVP_PKEY_CTX_new_from_name(NULL, "EC", NULL))
|| !TEST_int_gt(EVP_PKEY_fromdata_init(pctx), 0)
|| !TEST_int_gt(EVP_PKEY_fromdata(pctx, &pkeyparam,
EVP_PKEY_KEY_PARAMETERS, params), 0))
goto err;
/*- Check that all the set values are retrievable -*/
/* There should be no match to a group name since the generator changed */
if (!TEST_false(EVP_PKEY_get_utf8_string_param(pkeyparam,
OSSL_PKEY_PARAM_GROUP_NAME, name, sizeof(name),
&name_len)))
goto err;
/* The encoding should be explicit as it has no group */
if (!TEST_true(EVP_PKEY_get_utf8_string_param(pkeyparam,
OSSL_PKEY_PARAM_EC_ENCODING,
name, sizeof(name), &name_len))
|| !TEST_str_eq(name, OSSL_PKEY_EC_ENCODING_EXPLICIT))
goto err;
if (!TEST_true(EVP_PKEY_get_utf8_string_param(pkeyparam,
OSSL_PKEY_PARAM_EC_FIELD_TYPE, name, sizeof(name),
&name_len))
|| !TEST_str_eq(name, field_name))
goto err;
if (!TEST_true(EVP_PKEY_get_octet_string_param(pkeyparam,
OSSL_PKEY_PARAM_EC_GENERATOR, buf, sizeof(buf), &buf_len))
|| !TEST_mem_eq(buf, (int)buf_len, gen, gen_size))
goto err;
if (!TEST_true(EVP_PKEY_get_bn_param(pkeyparam, OSSL_PKEY_PARAM_EC_P, &p_out))
|| !TEST_BN_eq(p_out, p)
|| !TEST_true(EVP_PKEY_get_bn_param(pkeyparam, OSSL_PKEY_PARAM_EC_A,
&a_out))
|| !TEST_BN_eq(a_out, a)
|| !TEST_true(EVP_PKEY_get_bn_param(pkeyparam, OSSL_PKEY_PARAM_EC_B,
&b_out))
|| !TEST_BN_eq(b_out, b)
|| !TEST_true(EVP_PKEY_get_bn_param(pkeyparam, OSSL_PKEY_PARAM_EC_ORDER,
&order_out))
|| !TEST_BN_eq(order_out, EC_GROUP_get0_order(group)))
goto err;
if (EC_GROUP_get0_cofactor(group) != NULL) {
if (!TEST_true(EVP_PKEY_get_bn_param(pkeyparam,
OSSL_PKEY_PARAM_EC_COFACTOR, &cofactor_out))
|| !TEST_BN_eq(cofactor_out, EC_GROUP_get0_cofactor(group)))
goto err;
}
if (EC_GROUP_get0_seed(group) != NULL) {
if (!TEST_true(EVP_PKEY_get_octet_string_param(pkeyparam,
OSSL_PKEY_PARAM_EC_SEED, buf, sizeof(buf), &buf_len))
|| !TEST_mem_eq(buf, buf_len, EC_GROUP_get0_seed(group),
EC_GROUP_get_seed_len(group)))
goto err;
}
if (EC_GROUP_get_field_type(group) == NID_X9_62_prime_field) {
/* No extra fields should be set for a prime field */
if (!TEST_false(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_M, &i_out))
|| !TEST_false(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_TP_BASIS, &i_out))
|| !TEST_false(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_PP_K1, &i_out))
|| !TEST_false(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_PP_K2, &i_out))
|| !TEST_false(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_PP_K3, &i_out))
|| !TEST_false(EVP_PKEY_get_utf8_string_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_TYPE, name, sizeof(name),
&name_len)))
goto err;
} else {
#ifndef OPENSSL_NO_EC2M
if (!TEST_true(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_M, &i_out))
|| !TEST_int_eq(EC_GROUP_get_degree(group), i_out)
|| !TEST_true(EVP_PKEY_get_utf8_string_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_TYPE, name, sizeof(name),
&name_len))
|| !TEST_str_eq(name, basis_name))
goto err;
if (EC_GROUP_get_basis_type(group) == NID_X9_62_tpBasis) {
if (!TEST_true(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_TP_BASIS, &i_out))
|| !TEST_int_eq(k1, i_out)
|| !TEST_false(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_PP_K1, &i_out))
|| !TEST_false(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_PP_K2, &i_out))
|| !TEST_false(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_PP_K3, &i_out)))
goto err;
} else {
if (!TEST_false(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_TP_BASIS, &i_out))
|| !TEST_true(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_PP_K1, &i_out))
|| !TEST_int_eq(k1, i_out)
|| !TEST_true(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_PP_K2, &i_out))
|| !TEST_int_eq(k2, i_out)
|| !TEST_true(EVP_PKEY_get_int_param(pkeyparam,
OSSL_PKEY_PARAM_EC_CHAR2_PP_K3, &i_out))
|| !TEST_int_eq(k3, i_out))
goto err;
}
#endif /* OPENSSL_NO_EC2M */
}
if (!TEST_ptr(gettable = EVP_PKEY_gettable_params(pkeyparam))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_GROUP_NAME))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_ENCODING))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_FIELD_TYPE))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_P))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_A))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_B))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_GENERATOR))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_ORDER))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_COFACTOR))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_SEED))
#ifndef OPENSSL_NO_EC2M
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_CHAR2_M))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_CHAR2_TYPE))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_CHAR2_TP_BASIS))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_CHAR2_PP_K1))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_CHAR2_PP_K2))
|| !TEST_ptr(OSSL_PARAM_locate_const(gettable, OSSL_PKEY_PARAM_EC_CHAR2_PP_K3))
#endif
)
goto err;
ret = 1;
err:
BN_free(order_out);
BN_free(cofactor_out);
BN_free(a_out);
BN_free(b_out);
BN_free(p_out);
OSSL_PARAM_free(params);
OSSL_PARAM_BLD_free(bld);
EVP_PKEY_free(pkeyparam);
EVP_PKEY_CTX_free(pctx);
return ret;
}
/*
* check the EC_METHOD respects the supplied EC_GROUP_set_generator G
*/
static int custom_generator_test(int id)
{
int ret = 0, nid, bsize;
EC_GROUP *group = NULL;
EC_POINT *G2 = NULL, *Q1 = NULL, *Q2 = NULL;
BN_CTX *ctx = NULL;
BIGNUM *k = NULL;
unsigned char *b1 = NULL, *b2 = NULL;
/* Do some setup */
nid = curves[id].nid;
TEST_note("Curve %s", OBJ_nid2sn(nid));
if (!TEST_ptr(ctx = BN_CTX_new()))
return 0;
BN_CTX_start(ctx);
if (!TEST_ptr(group = EC_GROUP_new_by_curve_name(nid)))
goto err;
/* expected byte length of encoded points */
bsize = (EC_GROUP_get_degree(group) + 7) / 8;
bsize = 1 + 2 * bsize; /* UNCOMPRESSED_POINT format */
if (!TEST_ptr(k = BN_CTX_get(ctx))
/* fetch a testing scalar k != 0,1 */
|| !TEST_true(BN_rand(k, EC_GROUP_order_bits(group) - 1,
BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY))
/* make k even */
|| !TEST_true(BN_clear_bit(k, 0))
|| !TEST_ptr(G2 = EC_POINT_new(group))
|| !TEST_ptr(Q1 = EC_POINT_new(group))
/* Q1 := kG */
|| !TEST_true(EC_POINT_mul(group, Q1, k, NULL, NULL, ctx))
/* pull out the bytes of that */
|| !TEST_int_eq(EC_POINT_point2oct(group, Q1,
POINT_CONVERSION_UNCOMPRESSED, NULL,
0, ctx), bsize)
|| !TEST_ptr(b1 = OPENSSL_malloc(bsize))
|| !TEST_int_eq(EC_POINT_point2oct(group, Q1,
POINT_CONVERSION_UNCOMPRESSED, b1,
bsize, ctx), bsize)
/* new generator is G2 := 2G */
|| !TEST_true(EC_POINT_dbl(group, G2, EC_GROUP_get0_generator(group),
ctx))
|| !TEST_true(EC_GROUP_set_generator(group, G2,
EC_GROUP_get0_order(group),
EC_GROUP_get0_cofactor(group)))
|| !TEST_ptr(Q2 = EC_POINT_new(group))
|| !TEST_true(BN_rshift1(k, k))
/* Q2 := k/2 G2 */
|| !TEST_true(EC_POINT_mul(group, Q2, k, NULL, NULL, ctx))
|| !TEST_int_eq(EC_POINT_point2oct(group, Q2,
POINT_CONVERSION_UNCOMPRESSED, NULL,
0, ctx), bsize)
|| !TEST_ptr(b2 = OPENSSL_malloc(bsize))
|| !TEST_int_eq(EC_POINT_point2oct(group, Q2,
POINT_CONVERSION_UNCOMPRESSED, b2,
bsize, ctx), bsize)
/* Q1 = kG = k/2 G2 = Q2 should hold */
|| !TEST_mem_eq(b1, bsize, b2, bsize))
goto err;
if (!do_test_custom_explicit_fromdata(group, ctx, b1, bsize))
goto err;
ret = 1;
err:
EC_POINT_free(Q1);
EC_POINT_free(Q2);
EC_POINT_free(G2);
EC_GROUP_free(group);
BN_CTX_end(ctx);
BN_CTX_free(ctx);
OPENSSL_free(b1);
OPENSSL_free(b2);
return ret;
}
/*
* check creation of curves from explicit params through the public API
*/
static int custom_params_test(int id)
{
int ret = 0, nid, bsize;
const char *curve_name = NULL;
EC_GROUP *group = NULL, *altgroup = NULL;
EC_POINT *G2 = NULL, *Q1 = NULL, *Q2 = NULL;
const EC_POINT *Q = NULL;
BN_CTX *ctx = NULL;
BIGNUM *k = NULL;
unsigned char *buf1 = NULL, *buf2 = NULL;
const BIGNUM *z = NULL, *cof = NULL, *priv1 = NULL;
BIGNUM *p = NULL, *a = NULL, *b = NULL;
int is_prime = 0;
EC_KEY *eckey1 = NULL, *eckey2 = NULL;
EVP_PKEY *pkey1 = NULL, *pkey2 = NULL;
EVP_PKEY_CTX *pctx1 = NULL, *pctx2 = NULL;
size_t sslen, t;
unsigned char *pub1 = NULL , *pub2 = NULL;
OSSL_PARAM_BLD *param_bld = NULL;
OSSL_PARAM *params1 = NULL, *params2 = NULL;
/* Do some setup */
nid = curves[id].nid;
curve_name = OBJ_nid2sn(nid);
TEST_note("Curve %s", curve_name);
if (nid == NID_sm2)
return TEST_skip("custom params not supported with SM2");
if (!TEST_ptr(ctx = BN_CTX_new()))
return 0;
if (!TEST_ptr(group = EC_GROUP_new_by_curve_name(nid)))
goto err;
is_prime = EC_GROUP_get_field_type(group) == NID_X9_62_prime_field;
#ifdef OPENSSL_NO_EC2M
if (!is_prime) {
ret = TEST_skip("binary curves not supported in this build");
goto err;
}
#endif
BN_CTX_start(ctx);
if (!TEST_ptr(p = BN_CTX_get(ctx))
|| !TEST_ptr(a = BN_CTX_get(ctx))
|| !TEST_ptr(b = BN_CTX_get(ctx))
|| !TEST_ptr(k = BN_CTX_get(ctx)))
goto err;
/* expected byte length of encoded points */
bsize = (EC_GROUP_get_degree(group) + 7) / 8;
bsize = 1 + 2 * bsize; /* UNCOMPRESSED_POINT format */
/* extract parameters from built-in curve */
if (!TEST_true(EC_GROUP_get_curve(group, p, a, b, ctx))
|| !TEST_ptr(G2 = EC_POINT_new(group))
/* new generator is G2 := 2G */
|| !TEST_true(EC_POINT_dbl(group, G2,
EC_GROUP_get0_generator(group), ctx))
/* pull out the bytes of that */
|| !TEST_int_eq(EC_POINT_point2oct(group, G2,
POINT_CONVERSION_UNCOMPRESSED,
NULL, 0, ctx), bsize)
|| !TEST_ptr(buf1 = OPENSSL_malloc(bsize))
|| !TEST_int_eq(EC_POINT_point2oct(group, G2,
POINT_CONVERSION_UNCOMPRESSED,
buf1, bsize, ctx), bsize)
|| !TEST_ptr(z = EC_GROUP_get0_order(group))
|| !TEST_ptr(cof = EC_GROUP_get0_cofactor(group))
)
goto err;
/* create a new group using same params (but different generator) */
if (is_prime) {
if (!TEST_ptr(altgroup = EC_GROUP_new_curve_GFp(p, a, b, ctx)))
goto err;
}
#ifndef OPENSSL_NO_EC2M
else {
if (!TEST_ptr(altgroup = EC_GROUP_new_curve_GF2m(p, a, b, ctx)))
goto err;
}
#endif
/* set 2*G as the generator of altgroup */
EC_POINT_free(G2); /* discard G2 as it refers to the original group */
if (!TEST_ptr(G2 = EC_POINT_new(altgroup))
|| !TEST_true(EC_POINT_oct2point(altgroup, G2, buf1, bsize, ctx))
|| !TEST_int_eq(EC_POINT_is_on_curve(altgroup, G2, ctx), 1)
|| !TEST_true(EC_GROUP_set_generator(altgroup, G2, z, cof))
)
goto err;
/* verify math checks out */
if (/* allocate temporary points on group and altgroup */
!TEST_ptr(Q1 = EC_POINT_new(group))
|| !TEST_ptr(Q2 = EC_POINT_new(altgroup))
/* fetch a testing scalar k != 0,1 */
|| !TEST_true(BN_rand(k, EC_GROUP_order_bits(group) - 1,
BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY))
/* make k even */
|| !TEST_true(BN_clear_bit(k, 0))
/* Q1 := kG on group */
|| !TEST_true(EC_POINT_mul(group, Q1, k, NULL, NULL, ctx))
/* pull out the bytes of that */
|| !TEST_int_eq(EC_POINT_point2oct(group, Q1,
POINT_CONVERSION_UNCOMPRESSED,
NULL, 0, ctx), bsize)
|| !TEST_int_eq(EC_POINT_point2oct(group, Q1,
POINT_CONVERSION_UNCOMPRESSED,
buf1, bsize, ctx), bsize)
/* k := k/2 */
|| !TEST_true(BN_rshift1(k, k))
/* Q2 := k/2 G2 on altgroup */
|| !TEST_true(EC_POINT_mul(altgroup, Q2, k, NULL, NULL, ctx))
/* pull out the bytes of that */
|| !TEST_int_eq(EC_POINT_point2oct(altgroup, Q2,
POINT_CONVERSION_UNCOMPRESSED,
NULL, 0, ctx), bsize)
|| !TEST_ptr(buf2 = OPENSSL_malloc(bsize))
|| !TEST_int_eq(EC_POINT_point2oct(altgroup, Q2,
POINT_CONVERSION_UNCOMPRESSED,
buf2, bsize, ctx), bsize)
/* Q1 = kG = k/2 G2 = Q2 should hold */
|| !TEST_mem_eq(buf1, bsize, buf2, bsize))
goto err;
/* create two `EC_KEY`s on altgroup */
if (!TEST_ptr(eckey1 = EC_KEY_new())
|| !TEST_true(EC_KEY_set_group(eckey1, altgroup))
|| !TEST_true(EC_KEY_generate_key(eckey1))
|| !TEST_ptr(eckey2 = EC_KEY_new())
|| !TEST_true(EC_KEY_set_group(eckey2, altgroup))
|| !TEST_true(EC_KEY_generate_key(eckey2)))
goto err;
/* retrieve priv1 for later */
if (!TEST_ptr(priv1 = EC_KEY_get0_private_key(eckey1)))
goto err;
/*
* retrieve bytes for pub1 for later
*
* We compute the pub key in the original group as we will later use it to
* define a provider key in the built-in group.
*/
if (!TEST_true(EC_POINT_mul(group, Q1, priv1, NULL, NULL, ctx))
|| !TEST_int_eq(EC_POINT_point2oct(group, Q1,
POINT_CONVERSION_UNCOMPRESSED,
NULL, 0, ctx), bsize)
|| !TEST_ptr(pub1 = OPENSSL_malloc(bsize))
|| !TEST_int_eq(EC_POINT_point2oct(group, Q1,
POINT_CONVERSION_UNCOMPRESSED,
pub1, bsize, ctx), bsize))
goto err;
/* retrieve bytes for pub2 for later */
if (!TEST_ptr(Q = EC_KEY_get0_public_key(eckey2))
|| !TEST_int_eq(EC_POINT_point2oct(altgroup, Q,
POINT_CONVERSION_UNCOMPRESSED,
NULL, 0, ctx), bsize)
|| !TEST_ptr(pub2 = OPENSSL_malloc(bsize))
|| !TEST_int_eq(EC_POINT_point2oct(altgroup, Q,
POINT_CONVERSION_UNCOMPRESSED,
pub2, bsize, ctx), bsize))
goto err;
/* create two `EVP_PKEY`s from the `EC_KEY`s */
if(!TEST_ptr(pkey1 = EVP_PKEY_new())
|| !TEST_int_eq(EVP_PKEY_assign_EC_KEY(pkey1, eckey1), 1))
goto err;
eckey1 = NULL; /* ownership passed to pkey1 */
if(!TEST_ptr(pkey2 = EVP_PKEY_new())
|| !TEST_int_eq(EVP_PKEY_assign_EC_KEY(pkey2, eckey2), 1))
goto err;
eckey2 = NULL; /* ownership passed to pkey2 */
/* Compute keyexchange in both directions */
if (!TEST_ptr(pctx1 = EVP_PKEY_CTX_new(pkey1, NULL))
|| !TEST_int_eq(EVP_PKEY_derive_init(pctx1), 1)
|| !TEST_int_eq(EVP_PKEY_derive_set_peer(pctx1, pkey2), 1)
|| !TEST_int_eq(EVP_PKEY_derive(pctx1, NULL, &sslen), 1)
|| !TEST_int_gt(bsize, sslen)
|| !TEST_int_eq(EVP_PKEY_derive(pctx1, buf1, &sslen), 1))
goto err;
if (!TEST_ptr(pctx2 = EVP_PKEY_CTX_new(pkey2, NULL))
|| !TEST_int_eq(EVP_PKEY_derive_init(pctx2), 1)
|| !TEST_int_eq(EVP_PKEY_derive_set_peer(pctx2, pkey1), 1)
|| !TEST_int_eq(EVP_PKEY_derive(pctx2, NULL, &t), 1)
|| !TEST_int_gt(bsize, t)
|| !TEST_int_le(sslen, t)
|| !TEST_int_eq(EVP_PKEY_derive(pctx2, buf2, &t), 1))
goto err;
/* Both sides should expect the same shared secret */
if (!TEST_mem_eq(buf1, sslen, buf2, t))
goto err;
/* Build parameters for provider-native keys */
if (!TEST_ptr(param_bld = OSSL_PARAM_BLD_new())
|| !TEST_true(OSSL_PARAM_BLD_push_utf8_string(param_bld,
OSSL_PKEY_PARAM_GROUP_NAME,
curve_name, 0))
|| !TEST_true(OSSL_PARAM_BLD_push_octet_string(param_bld,
OSSL_PKEY_PARAM_PUB_KEY,
pub1, bsize))
|| !TEST_true(OSSL_PARAM_BLD_push_BN(param_bld,
OSSL_PKEY_PARAM_PRIV_KEY,
priv1))
|| !TEST_ptr(params1 = OSSL_PARAM_BLD_to_param(param_bld)))
goto err;
OSSL_PARAM_BLD_free(param_bld);
if (!TEST_ptr(param_bld = OSSL_PARAM_BLD_new())
|| !TEST_true(OSSL_PARAM_BLD_push_utf8_string(param_bld,
OSSL_PKEY_PARAM_GROUP_NAME,
curve_name, 0))
|| !TEST_true(OSSL_PARAM_BLD_push_octet_string(param_bld,
OSSL_PKEY_PARAM_PUB_KEY,
pub2, bsize))
|| !TEST_ptr(params2 = OSSL_PARAM_BLD_to_param(param_bld)))
goto err;
/* create two new provider-native `EVP_PKEY`s */
EVP_PKEY_CTX_free(pctx2);
if (!TEST_ptr(pctx2 = EVP_PKEY_CTX_new_from_name(NULL, "EC", NULL))
|| !TEST_true(EVP_PKEY_fromdata_init(pctx2))
|| !TEST_true(EVP_PKEY_fromdata(pctx2, &pkey1, EVP_PKEY_KEYPAIR,
params1))
|| !TEST_true(EVP_PKEY_fromdata(pctx2, &pkey2, EVP_PKEY_PUBLIC_KEY,
params2)))
goto err;
/* compute keyexchange once more using the provider keys */
EVP_PKEY_CTX_free(pctx1);
if (!TEST_ptr(pctx1 = EVP_PKEY_CTX_new(pkey1, NULL))
|| !TEST_int_eq(EVP_PKEY_derive_init(pctx1), 1)
|| !TEST_int_eq(EVP_PKEY_derive_set_peer(pctx1, pkey2), 1)
|| !TEST_int_eq(EVP_PKEY_derive(pctx1, NULL, &t), 1)
|| !TEST_int_gt(bsize, t)
|| !TEST_int_le(sslen, t)
|| !TEST_int_eq(EVP_PKEY_derive(pctx1, buf1, &t), 1)
/* compare with previous result */
|| !TEST_mem_eq(buf1, t, buf2, sslen))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(ctx);
OSSL_PARAM_BLD_free(param_bld);
OSSL_PARAM_free(params1);
OSSL_PARAM_free(params2);
EC_POINT_free(Q1);
EC_POINT_free(Q2);
EC_POINT_free(G2);
EC_GROUP_free(group);
EC_GROUP_free(altgroup);
OPENSSL_free(buf1);
OPENSSL_free(buf2);
OPENSSL_free(pub1);
OPENSSL_free(pub2);
EC_KEY_free(eckey1);
EC_KEY_free(eckey2);
EVP_PKEY_free(pkey1);
EVP_PKEY_free(pkey2);
EVP_PKEY_CTX_free(pctx1);
EVP_PKEY_CTX_free(pctx2);
return ret;
}
int setup_tests(void)
{
crv_len = EC_get_builtin_curves(NULL, 0);
if (!TEST_ptr(curves = OPENSSL_malloc(sizeof(*curves) * crv_len))
|| !TEST_true(EC_get_builtin_curves(curves, crv_len)))
return 0;
ADD_TEST(parameter_test);
ADD_TEST(cofactor_range_test);
ADD_ALL_TESTS(cardinality_test, crv_len);
ADD_TEST(prime_field_tests);
#ifndef OPENSSL_NO_EC2M
ADD_TEST(char2_field_tests);
ADD_ALL_TESTS(char2_curve_test, OSSL_NELEM(char2_curve_tests));
#endif
ADD_ALL_TESTS(nistp_single_test, OSSL_NELEM(nistp_tests_params));
ADD_ALL_TESTS(internal_curve_test, crv_len);
ADD_ALL_TESTS(internal_curve_test_method, crv_len);
ADD_TEST(group_field_test);
ADD_ALL_TESTS(check_named_curve_test, crv_len);
ADD_ALL_TESTS(check_named_curve_lookup_test, crv_len);
ADD_ALL_TESTS(check_ec_key_field_public_range_test, crv_len);
[ec] Match built-in curves on EC_GROUP_new_from_ecparameters Description ----------- Upon `EC_GROUP_new_from_ecparameters()` check if the parameters match any of the built-in curves. If that is the case, return a new `EC_GROUP_new_by_curve_name()` object instead of the explicit parameters `EC_GROUP`. This affects all users of `EC_GROUP_new_from_ecparameters()`: - direct calls to `EC_GROUP_new_from_ecparameters()` - direct calls to `EC_GROUP_new_from_ecpkparameters()` with an explicit parameters argument - ASN.1 parsing of explicit parameters keys (as it eventually ends up calling `EC_GROUP_new_from_ecpkparameters()`) A parsed explicit parameter key will still be marked with the `OPENSSL_EC_EXPLICIT_CURVE` ASN.1 flag on load, so, unless programmatically forced otherwise, if the key is eventually serialized the output will still be encoded with explicit parameters, even if internally it is treated as a named curve `EC_GROUP`. Before this change, creating any `EC_GROUP` object using `EC_GROUP_new_from_ecparameters()`, yielded an object associated with the default generic `EC_METHOD`, but this was never guaranteed in the documentation. After this commit, users of the library that intentionally want to create an `EC_GROUP` object using a specific `EC_METHOD` can still explicitly call `EC_GROUP_new(foo_method)` and then manually set the curve parameters using `EC_GROUP_set_*()`. Motivation ---------- This has obvious performance benefits for the built-in curves with specialized `EC_METHOD`s and subtle but important security benefits: - the specialized methods have better security hardening than the generic implementations - optional fields in the parameter encoding, like the `cofactor`, cannot be leveraged by an attacker to force execution of the less secure code-paths for single point scalar multiplication - in general, this leads to reducing the attack surface Check the manuscript at https://arxiv.org/abs/1909.01785 for an in depth analysis of the issues related to this commit. It should be noted that `libssl` does not allow to negotiate explicit parameters (as per RFC 8422), so it is not directly affected by the consequences of using explicit parameters that this commit fixes. On the other hand, we detected external applications and users in the wild that use explicit parameters by default (and sometimes using 0 as the cofactor value, which is technically not a valid value per the specification, but is tolerated by parsers for wider compatibility given that the field is optional). These external users of `libcrypto` are exposed to these vulnerabilities and their security will benefit from this commit. Related commits --------------- While this commit is beneficial for users using built-in curves and explicit parameters encoding for serialized keys, commit b783beeadf6b80bc431e6f3230b5d5585c87ef87 (and its equivalents for the 1.0.2, 1.1.0 and 1.1.1 stable branches) fixes the consequences of the invalid cofactor values more in general also for other curves (CVE-2019-1547). The following list covers commits in `master` that are related to the vulnerabilities presented in the manuscript motivating this commit: - d2baf88c43 [crypto/rsa] Set the constant-time flag in multi-prime RSA too - 311e903d84 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation. - b783beeadf [crypto/ec] for ECC parameters with NULL or zero cofactor, compute it - 724339ff44 Fix SCA vulnerability when using PVK and MSBLOB key formats Note that the PRs that contributed the listed commits also include other commits providing related testing and documentation, in addition to links to PRs and commits backporting the fixes to the 1.0.2, 1.1.0 and 1.1.1 branches. Responsible Disclosure ---------------------- This and the other issues presented in https://arxiv.org/abs/1909.01785 were reported by Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin, Alejandro Cabrera Aldaya and Billy Bob Brumley from the NISEC group at Tampere University, FINLAND. The OpenSSL Security Team evaluated the security risk for this vulnerability as low, and encouraged to propose fixes using public Pull Requests. _______________________________________________________________________________ Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Paul Dale <paul.dale@oracle.com> (Merged from https://github.com/openssl/openssl/pull/9808)
2019-09-07 15:05:31 +00:00
ADD_ALL_TESTS(check_named_curve_from_ecparameters, crv_len);
ADD_ALL_TESTS(ec_point_hex2point_test, crv_len);
ADD_ALL_TESTS(custom_generator_test, crv_len);
ADD_ALL_TESTS(custom_params_test, crv_len);
return 1;
}
void cleanup_tests(void)
{
OPENSSL_free(curves);
}