Introduce new internal hashtable implementation

Create a new hashtable that is more efficient than the existing LHASH_OF
implementation.  the new ossl_ht api offers several new features that
improve performance opportunistically

* A more generalized hash function.  Currently using fnv1a, provides a
  more general hash function, but can still be overridden where needed

* Improved locking and reference counting.  This hash table is
  internally locked with an RCU lock, and optionally reference counts
  elements, allowing for users to not have to create and manage their
  own read/write locks

* Lockless operation.  The hash table can be configured to operate
  locklessly on the read side, improving performance, at the sacrifice
  of the ability to grow the hash table or delete elements from it

* A filter function allowing for the retrieval of several elements at a
  time matching a given criteria without having to hold a lock
  permanently

* a doall_until iterator variant, that allows callers which need to
  iterate over the entire hash table until a given condition is met (as
  defined by the return value of the iterator callback).  This allows
  for callers attempting to do expensive cache searches for a small
  number of elements to terminate the iteration early, saving cpu cycles

* Dynamic type safety.  The hash table provides operations to set and
  get data of a specific type without having to define a type at the
  instatiation point

* Multiple data type storage.  The hash table can store multiple data
  types allowing for more flexible usage

* Ubsan safety.  Because the API deals with concrete single types
  (HT_KEY and HT_VALUE), leaving specific type casting to the call
  recipient with dynamic type validation, this implementation is safe
  from the ubsan undefined behavior warnings that require additional
  thunking on callbacks.

Testing of this new hashtable with an equivalent hash function, I can
observe approximately a 6% performance improvement in the lhash_test

Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/23671)
This commit is contained in:
Neil Horman 2024-01-28 10:50:38 -05:00 committed by Pauli
parent 7e45ac6891
commit cc4ea5e000
14 changed files with 1735 additions and 10 deletions

View File

@ -1,6 +1,6 @@
# Note that these directories are filtered in Configure. Look for %skipdir
# there for further explanations.
SUBDIRS=objects buffer bio stack lhash rand evp asn1 pem x509 conf \
SUBDIRS=objects buffer bio stack lhash hashtable rand evp asn1 pem x509 conf \
txt_db pkcs7 pkcs12 ui kdf store property \
md2 md4 md5 sha mdc2 hmac ripemd whrlpool poly1305 \
siphash sm3 des aes rc2 rc4 rc5 idea aria bf cast camellia \

View File

@ -0,0 +1,4 @@
LIBS=../../libcrypto
SOURCE[../../libcrypto]=\
hashtable.c

View File

@ -0,0 +1,690 @@
/*
* Copyright 2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
*
*
* Notes On hash table design and layout
* This hashtable uses a hopscotch algorithm to do indexing. The data structure
* looks as follows:
*
* hash +--------------+
* value+------->+ HT_VALUE |
* + +--------------+
* +-------+
* | |
* +---------------------------------------------------------+
* | | | | | |
* | entry | entry | entry | entry | |
* | | | | | |
* +---------------------------------------------------------+
* | | |
* | | |
* +---------------------------------------------------------+
* | + + +
* | neighborhood[0] neighborhood[1] |
* | |
* | |
* +---------------------------------------------------------+
* |
* +
* neighborhoods
*
* On lookup/insert/delete, the items key is hashed to a 64 bit value
* and the result is masked to provide an index into the neighborhoods
* table. Once a neighborhood is determined, an in-order search is done
* of the elements in the neighborhood indexes entries for a matching hash
* value, if found, the corresponding HT_VALUE is used for the respective
* operation. The number of entries in a neighborhood is determined at build
* time based on the cacheline size of the target CPU. The intent is for a
* neighborhood to have all entries in the neighborhood fit into a single cache
* line to speed up lookups. If all entries in a neighborhood are in use at the
* time of an insert, the table is expanded and rehashed.
*/
#include <string.h>
#include <internal/rcu.h>
#include <internal/hashtable.h>
#include <openssl/rand.h>
/*
* gcc defines __SANITIZE_THREAD__
* but clang uses the feature attributes api
* map the latter to the former
*/
#if defined(__clang__) && defined(__has_feature)
# if __has_feature(thread_sanitizer)
# define __SANITIZE_THREADS__
# endif
#endif
#ifdef __SANITIZE_THREADS__
# include <sanitizer/tsan_interface.h>
#endif
#include "internal/numbers.h"
/*
* When we do a lookup/insert/delete, there is a high likelyhood
* that we will iterate over at least part of the neighborhood list
* As such, because we design a neighborhood entry to fit into a single
* cache line it is advantageous, when supported to fetch the entire
* structure for faster lookups
*/
#if defined(__GNUC__) || defined(__CLANG__)
#define PREFETCH_NEIGHBORHOOD(x) __builtin_prefetch(x.entries)
#else
#define PREFETCH_NEIGHBORHOOD(x)
#endif
static ossl_unused uint64_t fnv1a_hash(uint8_t *key, size_t len)
{
uint64_t hash = 0xcbf29ce484222325ULL;
size_t i;
for (i = 0; i < len; i++) {
hash ^= key[i];
hash *= 0x00000100000001B3ULL;
}
return hash;
}
/*
* Define our neighborhood list length
* Note: It should always be a power of 2
*/
#define DEFAULT_NEIGH_LEN_LOG 4
#define DEFAULT_NEIGH_LEN (1 << DEFAULT_NEIGH_LEN_LOG)
/*
* For now assume cache line size is 64 bytes
*/
#define CACHE_LINE_BYTES 64
#define CACHE_LINE_ALIGNMENT CACHE_LINE_BYTES
#define NEIGHBORHOOD_LEN (CACHE_LINE_BYTES / sizeof(struct ht_neighborhood_entry_st))
/*
* Defines our chains of values
*/
struct ht_internal_value_st {
HT_VALUE value;
HT *ht;
};
struct ht_neighborhood_entry_st {
uint64_t hash;
struct ht_internal_value_st *value;
};
struct ht_neighborhood_st {
struct ht_neighborhood_entry_st entries[NEIGHBORHOOD_LEN];
};
/*
* Updates to data in this struct
* require an rcu sync after modification
* prior to free
*/
struct ht_mutable_data_st {
struct ht_neighborhood_st *neighborhoods;
void *neighborhood_ptr_to_free;
uint64_t neighborhood_mask;
};
/*
* Private data may be updated on the write
* side only, and so do not require rcu sync
*/
struct ht_write_private_data_st {
size_t neighborhood_len;
size_t value_count;
int need_sync;
};
struct ht_internal_st {
HT_CONFIG config;
CRYPTO_RCU_LOCK *lock;
CRYPTO_RWLOCK *atomic_lock;
struct ht_mutable_data_st *md;
struct ht_write_private_data_st wpd;
};
static void free_value(struct ht_internal_value_st *v);
static struct ht_neighborhood_st *alloc_new_neighborhood_list(size_t len,
void **freeptr)
{
struct ht_neighborhood_st *ret;
ret = OPENSSL_aligned_alloc(sizeof(struct ht_neighborhood_st) * len,
CACHE_LINE_BYTES, freeptr);
/* fall back to regular malloc */
if (ret == NULL) {
ret = *freeptr = OPENSSL_malloc(sizeof(struct ht_neighborhood_st) * len);
if (ret == NULL)
return NULL;
}
memset(ret, 0, sizeof(struct ht_neighborhood_st) * len);
return ret;
}
static void internal_free_nop(HT_VALUE *v)
{
return;
}
HT *ossl_ht_new(HT_CONFIG *conf)
{
HT *new = OPENSSL_zalloc(sizeof(*new));
if (new == NULL)
return NULL;
new->atomic_lock = CRYPTO_THREAD_lock_new();
if (new->atomic_lock == NULL)
goto err;
memcpy(&new->config, conf, sizeof(*conf));
if (new->config.init_neighborhoods != 0) {
new->wpd.neighborhood_len = new->config.init_neighborhoods;
/* round up to the next power of 2 */
new->wpd.neighborhood_len--;
new->wpd.neighborhood_len |= new->wpd.neighborhood_len >> 1;
new->wpd.neighborhood_len |= new->wpd.neighborhood_len >> 2;
new->wpd.neighborhood_len |= new->wpd.neighborhood_len >> 4;
new->wpd.neighborhood_len |= new->wpd.neighborhood_len >> 8;
new->wpd.neighborhood_len |= new->wpd.neighborhood_len >> 16;
new->wpd.neighborhood_len++;
} else {
new->wpd.neighborhood_len = DEFAULT_NEIGH_LEN;
}
if (new->config.ht_free_fn == NULL)
new->config.ht_free_fn = internal_free_nop;
new->md = OPENSSL_zalloc(sizeof(*new->md));
if (new->md == NULL)
goto err;
new->md->neighborhoods =
alloc_new_neighborhood_list(new->wpd.neighborhood_len,
&new->md->neighborhood_ptr_to_free);
if (new->md->neighborhoods == NULL)
goto err;
new->md->neighborhood_mask = new->wpd.neighborhood_len - 1;
new->lock = ossl_rcu_lock_new(1, conf->ctx);
if (new->lock == NULL)
goto err;
if (new->config.ht_hash_fn == NULL)
new->config.ht_hash_fn = fnv1a_hash;
return new;
err:
CRYPTO_THREAD_lock_free(new->atomic_lock);
ossl_rcu_lock_free(new->lock);
OPENSSL_free(new->md->neighborhood_ptr_to_free);
OPENSSL_free(new->md);
OPENSSL_free(new);
return NULL;
}
void ossl_ht_read_lock(HT *htable)
{
ossl_rcu_read_lock(htable->lock);
}
void ossl_ht_read_unlock(HT *htable)
{
ossl_rcu_read_unlock(htable->lock);
}
void ossl_ht_write_lock(HT *htable)
{
ossl_rcu_write_lock(htable->lock);
htable->wpd.need_sync = 0;
}
void ossl_ht_write_unlock(HT *htable)
{
int need_sync = htable->wpd.need_sync;
htable->wpd.need_sync = 0;
ossl_rcu_write_unlock(htable->lock);
if (need_sync)
ossl_synchronize_rcu(htable->lock);
}
static void free_oldmd(void *arg)
{
struct ht_mutable_data_st *oldmd = arg;
size_t i, j;
size_t neighborhood_len = (size_t)oldmd->neighborhood_mask + 1;
struct ht_internal_value_st *v;
for (i = 0; i < neighborhood_len; i++) {
PREFETCH_NEIGHBORHOOD(oldmd->neighborhoods[i + 1]);
for (j = 0; j < NEIGHBORHOOD_LEN; j++) {
if (oldmd->neighborhoods[i].entries[j].value != NULL) {
v = oldmd->neighborhoods[i].entries[j].value;
v->ht->config.ht_free_fn((HT_VALUE *)v);
free_value(v);
}
}
}
OPENSSL_free(oldmd->neighborhood_ptr_to_free);
OPENSSL_free(oldmd);
}
static int ossl_ht_flush_internal(HT *h)
{
struct ht_mutable_data_st *newmd = NULL;
struct ht_mutable_data_st *oldmd = NULL;
newmd = OPENSSL_zalloc(sizeof(*newmd));
if (newmd == NULL)
return 0;
newmd->neighborhoods = alloc_new_neighborhood_list(DEFAULT_NEIGH_LEN,
&newmd->neighborhood_ptr_to_free);
if (newmd->neighborhoods == NULL) {
OPENSSL_free(newmd);
return 0;
}
newmd->neighborhood_mask = DEFAULT_NEIGH_LEN - 1;
/* Swap the old and new mutable data sets */
oldmd = ossl_rcu_deref(&h->md);
ossl_rcu_assign_ptr(&h->md, &newmd);
/* Set the number of entries to 0 */
h->wpd.value_count = 0;
h->wpd.neighborhood_len = DEFAULT_NEIGH_LEN;
ossl_rcu_call(h->lock, free_oldmd, oldmd);
h->wpd.need_sync = 1;
return 1;
}
int ossl_ht_flush(HT *h)
{
return ossl_ht_flush_internal(h);
}
void ossl_ht_free(HT *h)
{
if (h == NULL)
return;
ossl_ht_write_lock(h);
ossl_ht_flush_internal(h);
ossl_ht_write_unlock(h);
/* Freeing the lock does a final sync for us */
CRYPTO_THREAD_lock_free(h->atomic_lock);
ossl_rcu_lock_free(h->lock);
OPENSSL_free(h->md->neighborhood_ptr_to_free);
OPENSSL_free(h->md);
OPENSSL_free(h);
return;
}
size_t ossl_ht_count(HT *h)
{
size_t count;
count = h->wpd.value_count;
return count;
}
void ossl_ht_foreach_until(HT *h, int (*cb)(HT_VALUE *obj, void *arg),
void *arg)
{
size_t i, j;
struct ht_mutable_data_st *md;
md = ossl_rcu_deref(&h->md);
for (i = 0; i < md->neighborhood_mask + 1; i++) {
PREFETCH_NEIGHBORHOOD(md->neighborhoods[i + 1]);
for (j = 0; j < NEIGHBORHOOD_LEN; j++) {
if (md->neighborhoods[i].entries[j].value != NULL) {
if (!cb((HT_VALUE *)md->neighborhoods[i].entries[j].value, arg))
goto out;
}
}
}
out:
return;
}
HT_VALUE_LIST *ossl_ht_filter(HT *h, size_t max_len,
int (*filter)(HT_VALUE *obj, void *arg),
void *arg)
{
struct ht_mutable_data_st *md;
HT_VALUE_LIST *list = OPENSSL_zalloc(sizeof(HT_VALUE_LIST)
+ (sizeof(HT_VALUE *) * max_len));
size_t i, j;
struct ht_internal_value_st *v;
if (list == NULL)
return NULL;
/*
* The list array lives just beyond the end of
* the struct
*/
list->list = (HT_VALUE **)(list + 1);
md = ossl_rcu_deref(&h->md);
for (i = 0; i < md->neighborhood_mask + 1; i++) {
PREFETCH_NEIGHBORHOOD(md->neighborhoods[i+1]);
for (j = 0; j < NEIGHBORHOOD_LEN; j++) {
v = md->neighborhoods[i].entries[j].value;
if (v != NULL && filter((HT_VALUE *)v, arg)) {
list->list[list->list_len++] = (HT_VALUE *)v;
if (list->list_len == max_len)
goto out;
}
}
}
out:
return list;
}
void ossl_ht_value_list_free(HT_VALUE_LIST *list)
{
OPENSSL_free(list);
}
static int compare_hash(uint64_t hash1, uint64_t hash2)
{
return (hash1 == hash2);
}
static void free_old_neigh_table(void *arg)
{
struct ht_mutable_data_st *oldmd = arg;
OPENSSL_free(oldmd->neighborhood_ptr_to_free);
OPENSSL_free(oldmd);
}
/*
* Increase hash table bucket list
* must be called with write_lock held
*/
static int grow_hashtable(HT *h, size_t oldsize)
{
struct ht_mutable_data_st *newmd = OPENSSL_zalloc(sizeof(*newmd));
struct ht_mutable_data_st *oldmd = ossl_rcu_deref(&h->md);
int rc = 0;
uint64_t oldi, oldj, newi, newj;
uint64_t oldhash;
struct ht_internal_value_st *oldv;
int rehashed;
size_t newsize = oldsize * 2;
if (newmd == NULL)
goto out;
/* bucket list is always a power of 2 */
newmd->neighborhoods = alloc_new_neighborhood_list(oldsize * 2,
&newmd->neighborhood_ptr_to_free);
if (newmd->neighborhoods == NULL)
goto out_free;
/* being a power of 2 makes for easy mask computation */
newmd->neighborhood_mask = (newsize - 1);
/*
* Now we need to start rehashing entries
* Note we don't need to use atomics here as the new
* mutable data hasn't been published
*/
for (oldi = 0; oldi < h->wpd.neighborhood_len; oldi++) {
PREFETCH_NEIGHBORHOOD(oldmd->neighborhoods[oldi + 1]);
for (oldj = 0; oldj < NEIGHBORHOOD_LEN; oldj++) {
oldv = oldmd->neighborhoods[oldi].entries[oldj].value;
if (oldv == NULL)
continue;
oldhash = oldmd->neighborhoods[oldi].entries[oldj].hash;
newi = oldhash & newmd->neighborhood_mask;
rehashed = 0;
for (newj = 0; newj < NEIGHBORHOOD_LEN; newj++) {
if (newmd->neighborhoods[newi].entries[newj].value == NULL) {
newmd->neighborhoods[newi].entries[newj].value = oldv;
newmd->neighborhoods[newi].entries[newj].hash = oldhash;
rehashed = 1;
break;
}
}
if (rehashed == 0) {
/* we ran out of space in a neighborhood, grow again */
OPENSSL_free(newmd->neighborhoods);
OPENSSL_free(newmd);
return grow_hashtable(h, newsize);
}
}
}
/*
* Now that our entries are all hashed into the new bucket list
* update our bucket_len and target_max_load
*/
h->wpd.neighborhood_len = newsize;
/*
* Now we replace the old mutable data with the new
*/
oldmd = ossl_rcu_deref(&h->md);
ossl_rcu_assign_ptr(&h->md, &newmd);
ossl_rcu_call(h->lock, free_old_neigh_table, oldmd);
h->wpd.need_sync = 1;
/*
* And we're done
*/
rc = 1;
out:
return rc;
out_free:
OPENSSL_free(newmd->neighborhoods);
OPENSSL_free(newmd);
goto out;
}
static void free_old_ht_value(void *arg)
{
HT_VALUE *h = (HT_VALUE *)arg;
/*
* Note, this is only called on replacement,
* the caller is responsible for freeing the
* held data, we just need to free the wrapping
* struct here
*/
OPENSSL_free(h);
}
static int ossl_ht_insert_locked(HT *h, uint64_t hash,
struct ht_internal_value_st *newval,
HT_VALUE **olddata)
{
struct ht_mutable_data_st *md = h->md;
uint64_t neigh_idx = hash & md->neighborhood_mask;
size_t j;
uint64_t ihash;
HT_VALUE *ival;
size_t empty_idx = SIZE_MAX;
PREFETCH_NEIGHBORHOOD(md->neighborhoods[neigh_idx]);
for (j = 0; j < NEIGHBORHOOD_LEN; j++) {
ival = ossl_rcu_deref(&md->neighborhoods[neigh_idx].entries[j].value);
CRYPTO_atomic_load(&md->neighborhoods[neigh_idx].entries[j].hash,
&ihash, h->atomic_lock);
if (ival == NULL)
empty_idx = j;
if (compare_hash(hash, ihash)) {
if (olddata == NULL) {
/* invalid */
return 0;
}
/* Do a replacement */
CRYPTO_atomic_store(&md->neighborhoods[neigh_idx].entries[j].hash,
hash, h->atomic_lock);
*olddata = (HT_VALUE *)md->neighborhoods[neigh_idx].entries[j].value;
ossl_rcu_assign_ptr(&md->neighborhoods[neigh_idx].entries[j].value,
&newval);
ossl_rcu_call(h->lock, free_old_ht_value, *olddata);
h->wpd.need_sync = 1;
return 1;
}
}
/* If we get to here, its just an insert */
if (empty_idx == SIZE_MAX)
return -1; /* out of space */
h->wpd.value_count++;
CRYPTO_atomic_store(&md->neighborhoods[neigh_idx].entries[empty_idx].hash,
hash, h->atomic_lock);
ossl_rcu_assign_ptr(&md->neighborhoods[neigh_idx].entries[empty_idx].value,
&newval);
return 1;
}
static struct ht_internal_value_st *alloc_new_value(HT *h, HT_KEY *key,
void *data,
uintptr_t *type)
{
struct ht_internal_value_st *new;
struct ht_internal_value_st *tmp;
new = OPENSSL_malloc(sizeof(*new));
if (new == NULL)
return NULL;
tmp = (struct ht_internal_value_st *)ossl_rcu_deref(&new);
tmp->ht = h;
tmp->value.value = data;
tmp->value.type_id = type;
return tmp;
}
static void free_value(struct ht_internal_value_st *v)
{
OPENSSL_free(v);
}
int ossl_ht_insert(HT *h, HT_KEY *key, HT_VALUE *data, HT_VALUE **olddata)
{
struct ht_internal_value_st *newval = NULL;
uint64_t hash;
int rc = 0;
if (data->value == NULL)
goto out;
newval = alloc_new_value(h, key, data->value, data->type_id);
if (newval == NULL)
goto out;
/*
* we have to take our lock here to prevent other changes
* to the bucket list
*/
hash = h->config.ht_hash_fn(key->keybuf, key->keysize);
try_again:
rc = ossl_ht_insert_locked(h, hash, newval, olddata);
if (rc == -1) {
grow_hashtable(h, h->wpd.neighborhood_len);
goto try_again;
}
if (rc == 0)
free_value(newval);
out:
return rc;
}
HT_VALUE *ossl_ht_get(HT *h, HT_KEY *key)
{
struct ht_mutable_data_st *md;
uint64_t hash;
uint64_t neigh_idx;
struct ht_internal_value_st *vidx = NULL;
size_t j;
uint64_t ehash;
HT_VALUE *ret = NULL;
hash = h->config.ht_hash_fn(key->keybuf, key->keysize);
md = ossl_rcu_deref(&h->md);
neigh_idx = hash & md->neighborhood_mask;
PREFETCH_NEIGHBORHOOD(md->neighborhoods[neigh_idx]);
for (j = 0; j < NEIGHBORHOOD_LEN; j++) {
CRYPTO_atomic_load(&md->neighborhoods[neigh_idx].entries[j].hash,
&ehash, h->atomic_lock);
if (compare_hash(hash, ehash)) {
CRYPTO_atomic_load((uint64_t *)&md->neighborhoods[neigh_idx].entries[j].value,
(uint64_t *)&vidx, h->atomic_lock);
ret = (HT_VALUE *)vidx;
break;
}
}
return ret;
}
static void free_old_entry(void *arg)
{
struct ht_internal_value_st *v = arg;
v->ht->config.ht_free_fn((HT_VALUE *)v);
free_value(v);
}
int ossl_ht_delete(HT *h, HT_KEY *key)
{
uint64_t hash;
uint64_t neigh_idx;
size_t j;
struct ht_internal_value_st *v = NULL;
HT_VALUE *nv = NULL;
int rc = 0;
hash = h->config.ht_hash_fn(key->keybuf, key->keysize);
neigh_idx = hash & h->md->neighborhood_mask;
PREFETCH_NEIGHBORHOOD(h->md->neighborhoods[neigh_idx]);
for (j = 0; j < NEIGHBORHOOD_LEN; j++) {
if (compare_hash(hash, h->md->neighborhoods[neigh_idx].entries[j].hash)) {
h->wpd.value_count--;
CRYPTO_atomic_store(&h->md->neighborhoods[neigh_idx].entries[j].hash,
0, h->atomic_lock);
v = (struct ht_internal_value_st *)h->md->neighborhoods[neigh_idx].entries[j].value;
ossl_rcu_assign_ptr(&h->md->neighborhoods[neigh_idx].entries[j].value,
&nv);
rc = 1;
break;
}
}
if (rc == 1) {
ossl_rcu_call(h->lock, free_old_entry, v);
h->wpd.need_sync = 1;
}
return rc;
}

View File

@ -226,6 +226,65 @@ void *CRYPTO_zalloc(size_t num, const char *file, int line)
return ret;
}
void *CRYPTO_aligned_alloc(size_t num, size_t alignment, void **freeptr,
const char *file, int line)
{
void *ret;
*freeptr = NULL;
#if defined(OPENSSL_SMALL_FOOTPRINT)
ret = freeptr = NULL;
return ret;
#endif
#if defined (_BSD_SOURCE) || (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112L)
if (posix_memalign(&ret, alignment, num))
return NULL;
*freeptr = ret;
return ret;
#elif defined(_ISOC11_SOURCE)
ret = *freeptr = aligned_alloc(alignment, num);
return ret;
#else
/* we have to do this the hard way */
/*
* Note: Windows supports an _aligned_malloc call, but we choose
* not to use it here, because allocations from that function
* require that they be freed via _aligned_free. Given that
* we can't differentiate plain malloc blocks from blocks obtained
* via _aligned_malloc, just avoid its use entirely
*/
/*
* Step 1: Allocate an amount of memory that is <alignment>
* bytes bigger than requested
*/
*freeptr = malloc(num + alignment);
if (*freeptr == NULL)
return NULL;
/*
* Step 2: Add <alignment - 1> bytes to the pointer
* This will cross the alignment boundary that is
* requested
*/
ret = (void *)((char *)*freeptr + (alignment - 1));
/*
* Step 3: Use the alignment as a mask to translate the
* least significant bits of the allocation at the alignment
* boundary to 0. ret now holds a pointer to the memory
* buffer at the requested alignment
* NOTE: It is a documented requirement that alignment be a
* power of 2, which is what allows this to work
*/
ret = (void *)((uintptr_t)ret & (uintptr_t)(~(alignment - 1)));
return ret;
#endif
}
void *CRYPTO_realloc(void *str, size_t num, const char *file, int line)
{
INCREMENT(realloc_count);

View File

@ -0,0 +1,374 @@
=pod
=head1 NAME
ossl_ht_new, ossl_ht_free,
ossl_ht_read_lock, ossl_ht_read_unlock,
ossl_ht_write_lock, ossl_ht_write_unlock,
ossl_ht_flush, ossl_ht_insert,
ossl_ht_delete, ossl_ht_count,
ossl_ht_foreach_until, ossl_ht_filter,
ossl_ht_value_list_free, ossl_ht_get,
ossl_ht_put, HT_START_KEY_DEFN,
HT_END_KEY_DEFN, HT_DEF_KEY_FIELD_CHAR_ARRAY,
HT_DEF_KEY_FIELD_UINT8T_ARRAY, HT_DEF_KEY_FIELD,
HT_INIT_KEY, HT_KEY_RESET, HT_SET_KEY_FIELD,
HT_SET_KEY_STRING, HT_SET_KEY_BLOB,
TO_HT_KEY, FROM_HT_KEY,
IMPLEMENT_HT_VALUE_TYPE_FNS
- internal rcu locked hashtables
=head1 SYNOPSIS
HT *ossl_ht_new(HT_CONFIG *conf);
void ossl_ht_free(HT *htable);
void ossl_ht_read_lock(HT *htable);
void ossl_ht_read_unlock(HT *htable);
void ossl_ht_write_lock(HT *htable);
void ossl_ht_write_unlock(HT *htable);
int ossl_ht_flush(HT *htable);
int ossl_ht_insert(HT *htable, HT_KEY *key, HT_VALUE *data, HT_VALUE **olddata);
int ossl_ht_delete(HT *htable, HT_KEY *key);
size_t ossl_ht_count(HT *htable);
void ossl_ht_foreach_until(HT *htable, int (*cb)(HT_VALUE *obj, void *arg), void *arg);
HT_VALUE_LIST *ossl_ht_filter(HT *htable, size_t max_len, int (*filter)(HT_VALUE *obj));
void ossl_ht_value_list_free(HT_VALUE_LIST *list);
HT_VALUE *ossl_ht_get(HT *htable, HT_KEY *key);
void ossl_ht_put(HT_VALUE *value);
HT_START_KEY_DEFN(keyname);
HT_END_KEY_DEFN(keyname);
HT_DEF_KEY_FIELD(name, type);
HT_DEF_KEY_FIELD_CHAR_ARRAY(name, size);
HT_DEF_KEY_FIELD_UINT8T_ARRAY(name, size);
HT_INIT_KEY(key);
HT_KEY_RESET(key);
HT_SET_KEY_FIELD(key, member, value);
HT_SET_KEY_STRING(key, member, value);
HT_SET_KEY_BLOB(key, member, value, len);
TO_HT_KEY(key);
FROM_HT_KEY(key, type);
IMPLEMENT_HT_VALUE_TYPE_FNS(vtype, name, pfx);
=head1 DESCRIPTION
This API provides a library-internal implementation of a hashtable that provides
reference counted object retrieval under the protection of an rcu lock. API
type safety is offered via conversion macros to and from the generic HT_VALUE
type.
=over 2
=item *
ossl_ht_new() returns a new HT (hashtable object) used to store data
elements based on a defined key. The call accepts an HT_CONFIG pointer which
contains configurations options for hashtable. Current config options consist
of:
I<ht_free_fn> The function to call to free a value, may be B<NULL>.
I<ht_hash_fn> The function to generate a hash value for a key, may be B<NULL>.
I<init_neighborhood_len> The initial number of neighborhoods in the hash table.
Note that init_bucket_len may be set to zero, which will use the default initial
bucket size, which will be automatically expanded with the hash table load
average reaches 0.75.
Note that lockless_read operation implies behavioral restrictions. Specifically
Only element additions are allowed, deletion operations will fail
Hash table growth is inhibited. init_bucket_len should be set to an
appropriate value to prevent performance degradation
The table owner is responsible for ensuring there are no readers during a
freeing of the table.
Note that lockless_write operations are done at your own risk. Lockless
operation in a multithreaded environment will cause data corruption. It
is the callers responsibility in this mode of operation to provide thread
synchronization.
=item *
ossl_ht_free() frees an allocated hash table. Each element in the table
will have its reference count dropped, and, if said count reaches zero, the hash
tables registered free function will be called to release the element data.
=item *
ossl_ht_read_lock(), ossl_ht_read_unlock(), ossl_ht_write_lock() and
ossl_ht_write_unlock() lock the table for reading and writing/modification.
These function are not required for use in the event a table is to be used in a
lockless fashion, but if they are not used, it is the responsibility of the caller
to ensure thread synchronization. Note that an rcu lock is used internally for these
operations, so for table modifying actions (ossl_ht_flush() and ossl_ht_delete()
the write lock must be taken and released to ensure rcu synchronization takes
place.
=item *
ossl_ht_flush() empties a hash table. All elements will have their
reference counts decremented, and, on reaching zero, the free function will be
called to release the element data.
=item *
ossl_ht_insert() inserts an HT_VALUE element into the hash table, to be
hashed using the corresponding HT_KEY value.
=item *
ossl_ht_delete() deletes an entry from the hashtable indexed by the passed
HT_KEY value.
=item *
ossl_ht_count() returns the number of elements within the hash table.
=item *
ossl_ht_foreach_until() iterates over all elements in the hash table, calling
the passed callback function for each. The return value of the callback
indicates if the iteration should continue or not. Returning 1 indicates
iteration should continue, while returning 0 indicates that iteration should
terminate.
Note that the iteration is done under read lock protection, and as such
modifications to the table are disallowed in the callback function.
Modification to the value content are permitted, if the caller is able to
properly synchronize such modifications with other threads.
=item *
ossl_ht_filter() iterates over all elements of the hash table, calling
the filter callback for each element. If the callback returns 1, the
corresponding HT_VALUE is placed on a list, and its reference count incremented.
The completed list is returned to the caller as an HT_VALUE_LIST object
=item *
ossl_ht_value_list_free() frees an HT_VALUE_LIST. For each element on
the list, its reference count is decremented, and after traversing the list, the
list object is freed. Note, NULL elements are allowed on the list, but for any
element which is taken from the list by a caller, they must call
ossl_ht_put on the HT_VALUE to prevent memory leaks.
=item *
ossl_ht_get() preforms a lookup of an HT_KEY in the hashtable, returning
its corresponding value.
=item *
HT_START_KEY_DEFN() Begins the definition of a key type. the keyname parameter
defines the structure name, and presets a common key header.
=item *
HT_END_KEY_DEFN() Finalizes a key definition. the keyname parameter (which may
differ from the name passed in HT_START_KEY_DEFN(), defines the key type name.
The resulting type may be converted to an HT_KEY variable via the HT_TO_KEY()
macro, and back using the HT_FROM_KEY() macro.
=item *
HT_DEF_KEY_FIELD() Allows for the creation of data fields within a key. Note,
this macro can be used for any data type, but it is recommended that strings and
binary arrays be created with the HT_DEF_KEY_FIELD_CHAR_ARRAY() and
HT_DEF_KEY_FIELD_UINT8T_ARRAY() macros to ensure proper in-lining of key data.
=item *
HT_DEF_KEY_FIELD_CHAR_ARRAY() Creates a string field of fixed size
within a key definition. Note these items will be NULL terminated.
=item *
HT_DEF_KEY_FIELD_UINT8T_ARRAY() Creates an array of uint8_t elements within a
key.
=item *
HT_INIT_KEY() Initializes a key for use. Can be called multiple times, but must
be called at least once before using in any hashtable method.
=item *
HT_KEY_RESET() Resets a key's data to all zeros.
=item *
HT_SET_KEY_FIELD() Sets a field in a key (as defined by HT_DEF_KEY_FIELD()) to a
given value.
=item *
HT_SET_KEY_STRING() Preforms a strncpy() of a source string to the destination
key field.
=item *
HT_SET_KEY_BLOB() Preforms a memcpy() of a source uint8_t buffer to a
destination key field.
=item *
TO_HT_KEY() Converts a key type as defined by HT_START_KEY_DEFN() and
HE_END_KEY_DEFN() to the generic HT_KEY type
=item *
FROM_HT_KEY() Converts an HT_KEY back to a specific key type as defined by
HT_START_KEY_DEFN() and HT_END_KEY_DEFN()
=item *
IMPLEMENT_HT_VALUE_TYPE_FNS() creates template conversion functions for
manipulating the hashtable using specific data types. This macro accepts two
parameters, a NAME, which is used to prefix the hashtable function so that it
may be associated with a specific hash table, and TYPE which defines the type of
data the instantiated function accepts. The list of functions instantiated by
this macro are below.
=over 2
=item *
int ossl_ht_NAME_TYPE_insert(HT* h, HT_KEY *key, <type> *value, HT_VALUE **olddata)
Inserts a value to the hash table of type TYPE into the hash table using the
provided key. If olddata is not NULL, and a matching key already exists in the
table, the operation is a replacement, and the old data is returned in this
pointer
=item *
<TYPE> ossl_ht_NAME_TYPE_get(HT *h, HT_KEY *key, HT_VALUE **v)
Looks up an item in the hash table based on key, and returns the data it found,
if any. v holds a pointer to the HT_VALUE associated with the data.
=item *
<TYPE> *ossl_ht_NAME_TYPE_from_value(HT_VALUE *v)
Validates that the HT_VALUE provided matches the TYPE specified, and returns the
value data. If there is a type mismatch, NULL is returned
=item *
HT_VALUE *ossl_ht_NAME_TYPE_to_value(<TYPE> *data)
Converts the data pointer provided to an HT_VALUE object
=item *
int ossl_ht_NAME_TYPE_type(HT_VALUE *v)
Returns true if the HT_VALUE object passed in is of type <TYPE>
=back
=back
=head1 RETURN VALUES
ossl_ht_new() returns an HT* struct on success and NULL on error
void ossl_ht_free(HT *htable);
ossl_ht_flush() and ossl_ht_insert() return 1 on success and 0 on error
ossl_ht_delete() returns 1 if the key was successfully deleted, and 0 if the
key was not found.
ossl_ht_count() returns the number of elements in the hash table
ossl_ht_filter() returns an HT_VALUE_LIST of all elements matching the
provided filter
ossl_ht_get() returns an HT_VALUE pointer, or NULL if the element was not
found.
=head1 EXAMPLES
#include <stdio.h>
#include <string.h>
#include <openssl/err.h>
#include <openssl/crypto.h>
#include <internal/hashtable.h>
HT_START_KEY_DEFN(intkey)
HT_DEF_KEY_FIELD(myintkey, int)
HT_END_KEY_DEFN(INTKEY)
IMPLEMENT_HT_VALUE_TYPE_FNS(int, test, static)
static void int_free_fn(HT_VALUE *v)
{
int *i = ossl_crypto_test_int_from_value(v);
fprintf(stderr, "Freeing an element\n");
OPENSSL_free(i);
}
static int test_int_hashtable(void)
{
/*
* our config says:
* int_free_fn - Our free handler
* NULL - Use default hash fn
* 0 - use default initial bucket size
*/
HT_CONFIG hash_conf = {
int_free_fn,
NULL,
0
};
INTKEY key;
HT *ht = NULL;
HT_VALUE *v;
int rc;
int *newval = OPENSSL_malloc(sizeof(int));
ht = ossl_ht_new(&hash_conf);
if (ht == NULL)
return 0;
if (newval == NULL)
goto out;
*newval = 1;
/* insert */
HT_INIT_KEY(&key);
HT_SET_KEY_FIELD(&key, myintkey, 47);
ossl_ht_write_lock(ht);
rc = ossl_ht_test_int_insert(ht, TO_HT_KEY(&key), newval, NULL);
ossl_ht_write_unlock(ht);
if (rc == 0)
goto out;
/* num_items */
if (ossl_ht_count(ht) != 1)
goto out;
/* lookup */
HT_RESET_KEY(&key);
HT_SET_KEY_FIELD(&key, myintkey, 47);
ossl_ht_read_lock(ht);
v = ossl_ht_get(ht, TO_HT_KEY(&key);
fprintf(stderr, "found element with key 47 holding value %d\n",
*ossl_ht_test_int_from_value(v));
ossl_ht_read_unlock(ht);
rc = 1;
end:
/* this will call the free function for our element */
ossl_ht_free(ht);
return rc;
}
=head1 COPYRIGHT
Copyright 2024 The OpenSSL Project Authors. All Rights Reserved.
Licensed under the Apache License 2.0 (the "License"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file LICENSE in the source distribution or at
L<https://www.openssl.org/source/license.html>.
=cut

View File

@ -238,6 +238,10 @@ repeatedly load/unload shared libraries that allocate locks.
L<crypto(7)>, L<openssl-threads(7)>.
=head1 HISTORY
CRYPTO_atomic_store() was added in OpenSSL 3.4.0
=head1 COPYRIGHT
Copyright 2000-2023 The OpenSSL Project Authors. All Rights Reserved.

View File

@ -3,9 +3,9 @@
=head1 NAME
OPENSSL_malloc_init,
OPENSSL_malloc, OPENSSL_zalloc, OPENSSL_realloc, OPENSSL_free,
OPENSSL_clear_realloc, OPENSSL_clear_free, OPENSSL_cleanse,
CRYPTO_malloc, CRYPTO_zalloc, CRYPTO_realloc, CRYPTO_free,
OPENSSL_malloc, OPENSSL_aligned_alloc, OPENSSL_zalloc, OPENSSL_realloc,
OPENSSL_free, OPENSSL_clear_realloc, OPENSSL_clear_free, OPENSSL_cleanse,
CRYPTO_malloc, CRYPTO_aligned_alloc, CRYPTO_zalloc, CRYPTO_realloc, CRYPTO_free,
OPENSSL_strdup, OPENSSL_strndup,
OPENSSL_memdup, OPENSSL_strlcpy, OPENSSL_strlcat,
CRYPTO_strdup, CRYPTO_strndup,
@ -28,6 +28,7 @@ OPENSSL_MALLOC_FD
int OPENSSL_malloc_init(void);
void *OPENSSL_malloc(size_t num);
void *OPENSSL_aligned_alloc(size_t num, size_t alignment, void **freeptr);
void *OPENSSL_zalloc(size_t num);
void *OPENSSL_realloc(void *addr, size_t num);
void OPENSSL_free(void *addr);
@ -41,6 +42,8 @@ OPENSSL_MALLOC_FD
void OPENSSL_cleanse(void *ptr, size_t len);
void *CRYPTO_malloc(size_t num, const char *file, int line);
void *CRYPTO_aligned_alloc(size_t num, size_t align, void **freeptr,
const char *file, int line);
void *CRYPTO_zalloc(size_t num, const char *file, int line);
void *CRYPTO_realloc(void *p, size_t num, const char *file, int line);
void CRYPTO_free(void *str, const char *, int);
@ -96,6 +99,20 @@ OPENSSL_malloc(), OPENSSL_realloc(), and OPENSSL_free() are like the
C malloc(), realloc(), and free() functions.
OPENSSL_zalloc() calls memset() to zero the memory before returning.
OPENSSL_aligned_alloc() operates just as OPENSSL_malloc does, but it
allows for the caller to specify an alignment value, for instances in
which the default alignment of malloc is insufficient for the callers
needs. Note, the alignment value must be a power of 2, and the size
specified must be a multiple of the alignment.
NOTE: The call to OPENSSL_aligned_alloc() accepts a 3rd argument, I<freeptr>
which must point to a void pointer. On some platforms, there is no available
library call to obtain memory allocations greater than what malloc provides. In
this case, OPENSSL_aligned_alloc implements its own alignment routine,
allocating additional memory and offsetting the returned pointer to be on the
requested alignment boundary. In order to safely free allocations made by this
method, the caller must return the value in the I<freeptr> variable, rather than
the returned pointer.
OPENSSL_clear_realloc() and OPENSSL_clear_free() should be used
when the buffer at B<addr> holds sensitive information.
The old buffer is filled with zero's by calling OPENSSL_cleanse()
@ -168,7 +185,7 @@ OPENSSL_malloc_init(), OPENSSL_free(), OPENSSL_clear_free()
CRYPTO_free(), CRYPTO_clear_free() and CRYPTO_get_mem_functions()
return no value.
OPENSSL_malloc(), OPENSSL_zalloc(), OPENSSL_realloc(),
OPENSSL_malloc(), OPENSSL_aligned_alloc(), OPENSSL_zalloc(), OPENSSL_realloc(),
OPENSSL_clear_realloc(),
CRYPTO_malloc(), CRYPTO_zalloc(), CRYPTO_realloc(),
CRYPTO_clear_realloc(),
@ -194,7 +211,7 @@ CRYPTO_mem_leaks_cb(), CRYPTO_set_mem_debug(), CRYPTO_mem_ctrl()
were deprecated in OpenSSL 3.0.
The memory-leak checking has been deprecated in OpenSSL 3.0 in favor of
clang's memory and leak sanitizer.
OPENSSL_aligned_alloc(), CRYPTO_aligned_alloc() were added in OpenSSL 3.4.0
=head1 COPYRIGHT

View File

@ -0,0 +1,332 @@
/*
* Copyright 2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#ifndef OPENSSL_HASHTABLE_H
# define OPENSSL_HASHTABLE_H
# pragma once
#include <stddef.h>
#include <stdint.h>
#include <openssl/e_os2.h>
#include <internal/rcu.h>
#include "crypto/context.h"
typedef struct ht_internal_st HT;
/*
* Represents a value in the hash table
*/
typedef struct ht_value_st {
void *value;
uintptr_t *type_id;
} HT_VALUE;
/*
* Represents a list of values filtered from a hash table
*/
typedef struct ht_value_list_st {
size_t list_len;
HT_VALUE **list;
} HT_VALUE_LIST;
/*
* Hashtable configuration
*/
typedef struct ht_config_st {
OSSL_LIB_CTX *ctx;
void (*ht_free_fn)(HT_VALUE *obj);
uint64_t (*ht_hash_fn)(uint8_t *key, size_t keylen);
uint32_t init_neighborhoods;
} HT_CONFIG;
/*
* Key value for a hash lookup
*/
typedef struct ht_key_header_st {
size_t keysize;
uint8_t *keybuf;
} HT_KEY;
/*
* Hashtable key rules
* Any struct can be used to formulate a hash table key, as long as the
* following rules
* 1) The first element of the struct defining the key must be an HT_KEY
* 2) All struct elements must have a compile time defined length
* 3) Pointers can be used, but the value of the pointer, rather than
* the contents of the address it points to will be used to compute
* the hash
* The key definition macros will assist with enforcing these rules
*/
/*
* Starts the definition of a hash table key
*/
#define HT_START_KEY_DEFN(keyname) \
typedef struct keyname##_st { \
HT_KEY key_header; \
struct {
/*
* Ends a hash table key definitions
*/
#define HT_END_KEY_DEFN(keyname) \
} keyfields; \
} keyname;
/*
* Defines a field in a hash table key
*/
#define HT_DEF_KEY_FIELD(name, type) type name;
/*
* convenience macro to define a static char
* array field in a hash table key
*/
#define HT_DEF_KEY_FIELD_CHAR_ARRAY(name, size) \
HT_DEF_KEY_FIELD(name[size], char)
/*
* Defines a uint8_t (blob) field in a hash table key
*/
#define HT_DEF_KEY_FIELD_UINT8T_ARRAY(name, size) \
HT_DEF_KEY_FIELD(name[size], uint8_t)
/*
* Initializes a key
*/
#define HT_INIT_KEY(key) do { \
memset((key), 0, sizeof(*(key))); \
(key)->key_header.keysize = (sizeof(*(key)) - sizeof(HT_KEY)); \
(key)->key_header.keybuf = (((uint8_t *)key) + sizeof(HT_KEY)); \
} while(0)
/*
* Resets a hash table key to a known state
*/
#define HT_KEY_RESET(key) memset((key)->key_header.keybuf, 0, (key)->key_header.keysize)
/*
* Sets a scalar field in a hash table key
*/
#define HT_SET_KEY_FIELD(key, member, value) (key)->keyfields.member = value;
/*
* Sets a string field in a hash table key, preserving
* null terminator
*/
#define HT_SET_KEY_STRING(key, member, value) do { \
if ((value) != NULL) \
strncpy((key)->keyfields.member, value, sizeof((key)->keyfields.member) - 1); \
} while(0)
/*
* This is the same as HT_SET_KEY_STRING, except that it uses
* ossl_ht_strcase to make the value being passed case insensitive
* This is useful for instances in which we want upper and lower case
* key value to hash to the same entry
*/
#define HT_SET_KEY_STRING_CASE(key, member, value) do { \
ossl_ht_strcase((key)->keyfields.member, value, sizeof((key)->keyfields.member) -1); \
} while(0)
/*
* Sets a uint8_t (blob) field in a hash table key
*/
#define HT_SET_KEY_BLOB(key, member, value, len) do { \
if (value != NULL) \
memcpy((key)->keyfields.member, value, len); \
} while(0)
/*
* Converts a defined key type to an HT_KEY
*/
#define TO_HT_KEY(key) &(key)->key_header
/*
* Converts an HT_KEY back to its defined
* type
*/
#define FROM_HT_KEY(key, type) (type)(key)
/*
* Implements the following type safe operations for a hash table
* ossl_ht_NAME_TYPE_insert - insert a value to a hash table of type TYPE
* ossl_ht_NAME_TYPE_get - gets a value of a specific type from the hash table
* ossl_ht_NAME_TYPE_from_value - converts an HT_VALUE to its type
* ossl_ht_NAME_TYPE_to_value - converts a TYPE to an HT_VALUE
* ossl_ht_NAME_TYPE_type - boolean to detect if a value is of TYPE
*/
#define IMPLEMENT_HT_VALUE_TYPE_FNS(vtype, name, pfx) \
static uintptr_t name##_##vtype##_id = 0; \
pfx ossl_unused int ossl_ht_##name##_##vtype##_insert(HT *h, HT_KEY *key, \
vtype *data, \
vtype **olddata) { \
HT_VALUE inval; \
HT_VALUE *oval = NULL; \
int rc; \
\
inval.value = data; \
inval.type_id = &name##_##vtype##_id; \
rc = ossl_ht_insert(h, key, &inval, olddata == NULL ? NULL : &oval); \
if (oval != NULL) \
*olddata = (vtype *)oval->value; \
return rc; \
} \
\
pfx ossl_unused vtype *ossl_ht_##name##_##vtype##_from_value(HT_VALUE *v) \
{ \
uintptr_t *expect_type = &name##_##vtype##_id; \
if (v == NULL) \
return NULL; \
if (v->type_id != expect_type) \
return NULL; \
return (vtype *)v->value; \
} \
\
pfx ossl_unused vtype *ossl_unused ossl_ht_##name##_##vtype##_get(HT *h, \
HT_KEY *key, \
HT_VALUE **v)\
{ \
HT_VALUE *vv; \
vv = ossl_ht_get(h, key); \
if (vv == NULL) \
return NULL; \
*v = ossl_rcu_deref(&vv); \
return ossl_ht_##name##_##vtype##_from_value(*v); \
} \
\
pfx ossl_unused HT_VALUE *ossl_ht_##name##_##vtype##_to_value(vtype *data, \
HT_VALUE *v) \
{ \
v->type_id = &name##_##vtype##_id; \
v->value = data; \
return v; \
} \
\
pfx ossl_unused int ossl_ht_##name##_##vtype##_type(HT_VALUE *h) \
{ \
return h->type_id == &name##_##vtype##_id; \
}
#define DECLARE_HT_VALUE_TYPE_FNS(vtype, name) \
int ossl_ht_##name##_##vtype##_insert(HT *h, HT_KEY *key, vtype *data, \
vtype **olddata); \
vtype *ossl_ht_##name##_##vtype##_from_value(HT_VALUE *v); \
vtype *ossl_unused ossl_ht_##name##_##vtype##_get(HT *h, \
HT_KEY *key, \
HT_VALUE **v); \
HT_VALUE *ossl_ht_##name##_##vtype##_to_value(vtype *data, HT_VALUE *v); \
int ossl_ht_##name##_##vtype##_type(HT_VALUE *h); \
/*
* Helper function to construct case insensitive keys
*/
static void ossl_unused ossl_ht_strcase(char *tgt, const char *src, int len)
{
int i;
#if defined(CHARSET_EBCDIC) && !defined(CHARSET_EBCDIC_TEST)
const long int case_adjust = ~0x40;
#else
const long int case_adjust = ~0x20;
#endif
if (src == NULL)
return;
for (i = 0; src[i] != '\0' && i < len; i++)
tgt[i] = case_adjust & src[i];
}
/*
* Create a new hashtable
*/
HT *ossl_ht_new(HT_CONFIG *conf);
/*
* Frees a hash table, potentially freeing all elements
*/
void ossl_ht_free(HT *htable);
/*
* Lock the table for reading
*/
void ossl_ht_read_lock(HT *htable);
/*
* Lock the table for writing
*/
void ossl_ht_write_lock(HT *htable);
/*
* Read unlock
*/
void ossl_ht_read_unlock(HT *htable);
/*
* Write unlock
*/
void ossl_ht_write_unlock (HT *htable);
/*
* Empties a hash table, potentially freeing all elements
*/
int ossl_ht_flush(HT *htable);
/*
* Inserts an element to a hash table, optionally returning
* replaced data to caller
* Returns 1 if the insert was successful, 0 on error
*/
int ossl_ht_insert(HT *htable, HT_KEY *key, HT_VALUE *data,
HT_VALUE **olddata);
/*
* Deletes a value from a hash table, based on key
* Returns 1 if the key was removed, 0 if they key was not found
*/
int ossl_ht_delete(HT *htable, HT_KEY *key);
/*
* Returns number of elements in the hash table
*/
size_t ossl_ht_count(HT *htable);
/*
* Iterates over each element in the table.
* aborts the loop when cb returns 0
* Contents of elements in the list may be modified during
* this traversal, assuming proper thread safety is observed while doing
* so (holding the table write lock is sufficient). However, elements of the
* table may not be inserted or removed while iterating.
*/
void ossl_ht_foreach_until(HT *htable, int (*cb)(HT_VALUE *obj, void *arg),
void *arg);
/*
* Returns a list of elements in a hash table based on
* filter function return value. Returns NULL on error,
* or an HT_VALUE_LIST object on success. Note it is possible
* That a list will be returned with 0 entries, if none were found.
* The zero length list must still be freed via ossl_ht_value_list_free
*/
HT_VALUE_LIST *ossl_ht_filter(HT *htable, size_t max_len,
int (*filter)(HT_VALUE *obj, void *arg),
void *arg);
/*
* Frees the list returned from ossl_ht_filter
*/
void ossl_ht_value_list_free(HT_VALUE_LIST *list);
/*
* Fetches a value from the hash table, based
* on key. Returns NULL if the element was not found.
*/
HT_VALUE *ossl_ht_get(HT *htable, HT_KEY *key);
#endif

View File

@ -99,6 +99,9 @@ int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock);
CRYPTO_malloc(num, OPENSSL_FILE, OPENSSL_LINE)
# define OPENSSL_zalloc(num) \
CRYPTO_zalloc(num, OPENSSL_FILE, OPENSSL_LINE)
# define OPENSSL_aligned_alloc(num, alignment, freeptr) \
CRYPTO_aligned_alloc(num, alignment, freeptr, \
OPENSSL_FILE, OPENSSL_LINE)
# define OPENSSL_realloc(addr, num) \
CRYPTO_realloc(addr, num, OPENSSL_FILE, OPENSSL_LINE)
# define OPENSSL_clear_realloc(addr, old_num, num) \
@ -322,6 +325,9 @@ void CRYPTO_get_mem_functions(CRYPTO_malloc_fn *malloc_fn,
OSSL_CRYPTO_ALLOC void *CRYPTO_malloc(size_t num, const char *file, int line);
OSSL_CRYPTO_ALLOC void *CRYPTO_zalloc(size_t num, const char *file, int line);
OSSL_CRYPTO_ALLOC void *CRYPTO_aligned_alloc(size_t num, size_t align,
void **freeptr, const char *file,
int line);
OSSL_CRYPTO_ALLOC void *CRYPTO_memdup(const void *str, size_t siz, const char *file, int line);
OSSL_CRYPTO_ALLOC char *CRYPTO_strdup(const char *str, const char *file, int line);
OSSL_CRYPTO_ALLOC char *CRYPTO_strndup(const char *str, size_t s, const char *file, int line);

View File

@ -418,7 +418,7 @@ IF[{- !$disabled{tests} -}]
SOURCE[lhash_test]=lhash_test.c
INCLUDE[lhash_test]=../include ../apps/include
DEPEND[lhash_test]=../libcrypto libtestutil.a
DEPEND[lhash_test]=../libcrypto.a libtestutil.a
SOURCE[dtlsv1listentest]=dtlsv1listentest.c
INCLUDE[dtlsv1listentest]=../include ../apps/include

View File

@ -15,6 +15,7 @@
#include <openssl/lhash.h>
#include <openssl/err.h>
#include <openssl/crypto.h>
#include <internal/hashtable.h>
#include "internal/nelem.h"
#include "testutil.h"
@ -31,7 +32,7 @@ DEFINE_LHASH_OF_EX(int);
static int int_tests[] = { 65537, 13, 1, 3, -5, 6, 7, 4, -10, -12, -14, 22, 9,
-17, 16, 17, -23, 35, 37, 173, 11 };
static const unsigned int n_int_tests = OSSL_NELEM(int_tests);
static const size_t n_int_tests = OSSL_NELEM(int_tests);
static short int_found[OSSL_NELEM(int_tests)];
static short int_not_found;
@ -106,7 +107,7 @@ static int test_int_lhash(void)
}
/* num_items */
if (!TEST_int_eq(lh_int_num_items(h), n_int_tests))
if (!TEST_int_eq((size_t)lh_int_num_items(h), n_int_tests))
goto end;
/* retrieve */
@ -180,21 +181,174 @@ end:
return testresult;
}
static int int_filter_all(HT_VALUE *v, void *arg)
{
return 1;
}
HT_START_KEY_DEFN(intkey)
HT_DEF_KEY_FIELD(mykey, int)
HT_END_KEY_DEFN(INTKEY)
IMPLEMENT_HT_VALUE_TYPE_FNS(int, test, static)
static int int_foreach(HT_VALUE *v, void *arg)
{
int *vd = ossl_ht_test_int_from_value(v);
const int n = int_find(*vd);
if (n < 0)
int_not_found++;
else
int_found[n]++;
return 1;
}
static uint64_t hashtable_hash(uint8_t *key, size_t keylen)
{
return (uint64_t)(*(uint32_t *)key);
}
static int test_int_hashtable(void)
{
static struct {
int data;
int should_del;
} dels[] = {
{ 65537 , 1},
{ 173 , 1},
{ 999 , 0 },
{ 37 , 1 },
{ 1 , 1 },
{ 34 , 0 }
};
const size_t n_dels = OSSL_NELEM(dels);
HT_CONFIG hash_conf = {
NULL,
NULL,
NULL,
0,
};
INTKEY key;
int rc = 0;
size_t i;
HT *ht = NULL;
int todel;
HT_VALUE_LIST *list = NULL;
ht = ossl_ht_new(&hash_conf);
if (ht == NULL)
return 0;
/* insert */
HT_INIT_KEY(&key);
for (i = 0; i < n_int_tests; i++) {
HT_SET_KEY_FIELD(&key, mykey, int_tests[i]);
if (!TEST_int_eq(ossl_ht_test_int_insert(ht, TO_HT_KEY(&key),
&int_tests[i], NULL), 1)) {
TEST_info("int insert %zu", i);
goto end;
}
}
/* num_items */
if (!TEST_int_eq((size_t)ossl_ht_count(ht), n_int_tests))
goto end;
/* foreach, no arg */
memset(int_found, 0, sizeof(int_found));
int_not_found = 0;
ossl_ht_foreach_until(ht, int_foreach, NULL);
if (!TEST_int_eq(int_not_found, 0)) {
TEST_info("hashtable int foreach encountered a not found condition");
goto end;
}
for (i = 0; i < n_int_tests; i++)
if (!TEST_int_eq(int_found[i], 1)) {
TEST_info("hashtable int foreach %zu", i);
goto end;
}
/* filter */
list = ossl_ht_filter(ht, 64, int_filter_all, NULL);
if (!TEST_int_eq((size_t)list->list_len, n_int_tests))
goto end;
ossl_ht_value_list_free(list);
/* delete */
for (i = 0; i < n_dels; i++) {
HT_SET_KEY_FIELD(&key, mykey, dels[i].data);
todel = ossl_ht_delete(ht, TO_HT_KEY(&key));
if (dels[i].should_del) {
if (!TEST_int_eq(todel, 1)) {
TEST_info("hashtable couldn't find entry to delete\n");
goto end;
}
} else {
if (!TEST_int_eq(todel, 0)) {
TEST_info("%d found an entry that shouldn't be there\n", dels[i].data);
goto end;
}
}
}
rc = 1;
end:
ossl_ht_free(ht);
return rc;
}
static unsigned long int stress_hash(const int *p)
{
return *p;
}
#ifdef MEASURE_HASH_PERFORMANCE
static int
timeval_subtract (struct timeval *result, struct timeval *x, struct timeval *y)
{
/* Perform the carry for the later subtraction by updating y. */
if (x->tv_usec < y->tv_usec) {
int nsec = (y->tv_usec - x->tv_usec) / 1000000 + 1;
y->tv_usec -= 1000000 * nsec;
y->tv_sec += nsec;
}
if (x->tv_usec - y->tv_usec > 1000000) {
int nsec = (x->tv_usec - y->tv_usec) / 1000000;
y->tv_usec += 1000000 * nsec;
y->tv_sec -= nsec;
}
/*
* Compute the time remaining to wait.
* tv_usec is certainly positive.
*/
result->tv_sec = x->tv_sec - y->tv_sec;
result->tv_usec = x->tv_usec - y->tv_usec;
/* Return 1 if result is negative. */
return x->tv_sec < y->tv_sec;
}
#endif
static int test_stress(void)
{
LHASH_OF(int) *h = lh_int_new(&stress_hash, &int_cmp);
const unsigned int n = 2500000;
unsigned int i;
int testresult = 0, *p;
#ifdef MEASURE_HASH_PERFORMANCE
struct timeval start, end, delta;
#endif
if (!TEST_ptr(h))
goto end;
#ifdef MEASURE_HASH_PERFORMANCE
gettimeofday(&start, NULL);
#endif
/* insert */
for (i = 0; i < n; i++) {
p = OPENSSL_malloc(sizeof(i));
@ -227,13 +381,94 @@ static int test_stress(void)
testresult = 1;
end:
#ifdef MEASURE_HASH_PERFORMANCE
gettimeofday(&end, NULL);
timeval_subtract(&delta, &end, &start);
TEST_info("lhash stress runs in %ld.%ld seconds", delta.tv_sec, delta.tv_usec);
#endif
lh_int_free(h);
return testresult;
}
static void hashtable_intfree(HT_VALUE *v)
{
OPENSSL_free(v->value);
}
static int test_hashtable_stress(void)
{
const unsigned int n = 2500000;
unsigned int i;
int testresult = 0, *p;
HT_CONFIG hash_conf = {
NULL, /* use default context */
hashtable_intfree, /* our free function */
hashtable_hash, /* our hash function */
625000, /* preset hash size */
};
HT *h;
INTKEY key;
#ifdef MEASURE_HASH_PERFORMANCE
struct timeval start, end, delta;
#endif
h = ossl_ht_new(&hash_conf);
if (!TEST_ptr(h))
goto end;
#ifdef MEASURE_HASH_PERFORMANCE
gettimeofday(&start, NULL);
#endif
HT_INIT_KEY(&key);
/* insert */
for (i = 0; i < n; i++) {
p = OPENSSL_malloc(sizeof(i));
if (!TEST_ptr(p)) {
TEST_info("hashtable stress out of memory %d", i);
goto end;
}
*p = 3 * i + 1;
HT_SET_KEY_FIELD(&key, mykey, *p);
if (!TEST_int_eq(ossl_ht_test_int_insert(h, TO_HT_KEY(&key),
p, NULL), 1)) {
TEST_info("hashtable unable to insert element %d\n", *p);
goto end;
}
}
/* make sure we stored everything */
if (!TEST_int_eq((size_t)ossl_ht_count(h), n))
goto end;
/* delete in a different order */
for (i = 0; i < n; i++) {
const int j = (7 * i + 4) % n * 3 + 1;
HT_SET_KEY_FIELD(&key, mykey, j);
if (!TEST_int_eq((ossl_ht_delete(h, TO_HT_KEY(&key))), 1)) {
TEST_info("hashtable didn't delete key %d\n", j);
goto end;
}
}
testresult = 1;
end:
#ifdef MEASURE_HASH_PERFORMANCE
gettimeofday(&end, NULL);
timeval_subtract(&delta, &end, &start);
TEST_info("hashtable stress runs in %ld.%ld seconds", delta.tv_sec, delta.tv_usec);
#endif
ossl_ht_free(h);
return testresult;
}
int setup_tests(void)
{
ADD_TEST(test_int_lhash);
ADD_TEST(test_stress);
ADD_TEST(test_int_hashtable);
ADD_TEST(test_hashtable_stress);
return 1;
}

View File

@ -5549,3 +5549,4 @@ OPENSSL_LH_set_thunks 5676 3_3_0 EXIST::FUNCTION:
OPENSSL_LH_doall_arg_thunk 5677 3_3_0 EXIST::FUNCTION:
OSSL_HTTP_REQ_CTX_set_max_response_hdr_lines 5678 3_3_0 EXIST::FUNCTION:HTTP
CRYPTO_atomic_store ? 3_4_0 EXIST::FUNCTION:
CRYPTO_aligned_alloc ? 3_4_0 EXIST::FUNCTION:

View File

@ -416,6 +416,7 @@ OPENSSL_clear_free define
OPENSSL_clear_realloc define
OPENSSL_free define
OPENSSL_malloc define
OPENSSL_aligned_alloc define
OPENSSL_malloc_init define
OPENSSL_mem_debug_pop define deprecated 3.0.0
OPENSSL_mem_debug_push define deprecated 3.0.0

View File

@ -1,5 +1,6 @@
abort
accept
aligned_alloc
bcmp
bind
calloc
@ -78,6 +79,7 @@ munmap
opendir
openlog
poll
posix_memalign
pthread_attr_destroy
pthread_attr_init
pthread_attr_setdetachstate