Use scalar ALU and vector ALU together for chacha20 stream cipher

Fixes #24070

Use scalar ALU for 1 chacha block with rvv ALU simultaneously.
The tail elements(non-multiple of block length) will be handled by
the scalar logic.

Use rvv path if the input length > chacha_block_size.

And we have about 1.2x improvement comparing with the original code.

Reviewed-by: Hongren Zheng <i@zenithal.me>
Reviewed-by: Paul Dale <ppzgs1@gmail.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/24097)
This commit is contained in:
Jerry Shih 2024-03-09 15:03:56 +08:00 committed by Tomas Mraz
parent 96939f1e2c
commit da8b6308bd
4 changed files with 273 additions and 86 deletions

View File

@ -38,6 +38,7 @@
# - RV64I
# - RISC-V Vector ('V') with VLEN >= 128
# - RISC-V Vector Cryptography Bit-manipulation extension ('Zvkb')
# - RISC-V Basic Bit-manipulation extension ('Zbb')
# - RISC-V Zicclsm(Main memory supports misaligned loads/stores)
use strict;
@ -59,19 +60,30 @@ my $code = <<___;
.text
___
# void ChaCha20_ctr32_zvkb(unsigned char *out, const unsigned char *inp,
# size_t len, const unsigned int key[8],
# const unsigned int counter[4]);
# void ChaCha20_ctr32_zbb_zvkb(unsigned char *out, const unsigned char *inp,
# size_t len, const unsigned int key[8],
# const unsigned int counter[4]);
################################################################################
my ( $OUTPUT, $INPUT, $LEN, $KEY, $COUNTER ) = ( "a0", "a1", "a2", "a3", "a4" );
my ( $T0 ) = ( "t0" );
my ( $CONST_DATA0, $CONST_DATA1, $CONST_DATA2, $CONST_DATA3 ) =
( "a5", "a6", "a7", "t1" );
my ( $KEY0, $KEY1, $KEY2,$KEY3, $KEY4, $KEY5, $KEY6, $KEY7,
$COUNTER0, $COUNTER1, $NONCE0, $NONCE1
) = ( "s0", "s1", "s2", "s3", "s4", "s5", "s6",
"s7", "s8", "s9", "s10", "s11" );
my ( $VL, $STRIDE, $CHACHA_LOOP_COUNT ) = ( "t2", "t3", "t4" );
my ( $CONST_DATA0, $CONST_DATA1, $CONST_DATA2, $CONST_DATA3 ) = ( "a5", "a6",
"a7", "s0" );
my ( $KEY0, $KEY1, $KEY2, $KEY3, $KEY4, $KEY5, $KEY6, $KEY7, $COUNTER0,
$COUNTER1, $NONCE0, $NONCE1) = ( "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"s8", "s9", "s10", "s11", "t0" );
my ( $STATE0, $STATE1, $STATE2, $STATE3,
$STATE4, $STATE5, $STATE6, $STATE7,
$STATE8, $STATE9, $STATE10, $STATE11,
$STATE12, $STATE13, $STATE14, $STATE15) = (
$CONST_DATA0, $CONST_DATA1, $CONST_DATA2, $CONST_DATA3,
$KEY0, $KEY1, $KEY2, $KEY3,
$KEY4, $KEY5, $KEY6, $KEY7,
$COUNTER0, $COUNTER1, $NONCE0, $NONCE1 );
my ( $VL ) = ( "t1" );
my ( $CURRENT_COUNTER ) = ( "t2" );
my ( $T0 ) = ( "t3" );
my ( $T1 ) = ( "t4" );
my ( $T2 ) = ( "t5" );
my ( $T3 ) = ( "t6" );
my (
$V0, $V1, $V2, $V3, $V4, $V5, $V6, $V7, $V8, $V9, $V10,
$V11, $V12, $V13, $V14, $V15, $V16, $V17, $V18, $V19, $V20, $V21,
@ -80,63 +92,118 @@ my (
sub chacha_quad_round_group {
my (
$A0, $B0, $C0, $D0, $A1, $B1, $C1, $D1,
$A2, $B2, $C2, $D2, $A3, $B3, $C3, $D3
$A0, $B0, $C0, $D0,
$A1, $B1, $C1, $D1,
$A2, $B2, $C2, $D2,
$A3, $B3, $C3, $D3,
$S_A0, $S_B0, $S_C0, $S_D0,
$S_A1, $S_B1, $S_C1, $S_D1,
$S_A2, $S_B2, $S_C2, $S_D2,
$S_A3, $S_B3, $S_C3, $S_D3,
) = @_;
my $code = <<___;
# a += b; d ^= a; d <<<= 16;
@{[vadd_vv $A0, $A0, $B0]}
add $S_A0, $S_A0, $S_B0
@{[vadd_vv $A1, $A1, $B1]}
add $S_A1, $S_A1, $S_B1
@{[vadd_vv $A2, $A2, $B2]}
add $S_A2, $S_A2, $S_B2
@{[vadd_vv $A3, $A3, $B3]}
add $S_A3, $S_A3, $S_B3
@{[vxor_vv $D0, $D0, $A0]}
xor $S_D0, $S_D0, $S_A0
@{[vxor_vv $D1, $D1, $A1]}
xor $S_D1, $S_D1, $S_A1
@{[vxor_vv $D2, $D2, $A2]}
xor $S_D2, $S_D2, $S_A2
@{[vxor_vv $D3, $D3, $A3]}
xor $S_D3, $S_D3, $S_A3
@{[vror_vi $D0, $D0, 32 - 16]}
@{[roriw $S_D0, $S_D0, 32 - 16]}
@{[vror_vi $D1, $D1, 32 - 16]}
@{[roriw $S_D1, $S_D1, 32 - 16]}
@{[vror_vi $D2, $D2, 32 - 16]}
@{[roriw $S_D2, $S_D2, 32 - 16]}
@{[vror_vi $D3, $D3, 32 - 16]}
@{[roriw $S_D3, $S_D3, 32 - 16]}
# c += d; b ^= c; b <<<= 12;
@{[vadd_vv $C0, $C0, $D0]}
add $S_C0, $S_C0, $S_D0
@{[vadd_vv $C1, $C1, $D1]}
add $S_C1, $S_C1, $S_D1
@{[vadd_vv $C2, $C2, $D2]}
add $S_C2, $S_C2, $S_D2
@{[vadd_vv $C3, $C3, $D3]}
add $S_C3, $S_C3, $S_D3
@{[vxor_vv $B0, $B0, $C0]}
xor $S_B0, $S_B0, $S_C0
@{[vxor_vv $B1, $B1, $C1]}
xor $S_B1, $S_B1, $S_C1
@{[vxor_vv $B2, $B2, $C2]}
xor $S_B2, $S_B2, $S_C2
@{[vxor_vv $B3, $B3, $C3]}
xor $S_B3, $S_B3, $S_C3
@{[vror_vi $B0, $B0, 32 - 12]}
@{[roriw $S_B0, $S_B0, 32 - 12]}
@{[vror_vi $B1, $B1, 32 - 12]}
@{[roriw $S_B1, $S_B1, 32 - 12]}
@{[vror_vi $B2, $B2, 32 - 12]}
@{[roriw $S_B2, $S_B2, 32 - 12]}
@{[vror_vi $B3, $B3, 32 - 12]}
@{[roriw $S_B3, $S_B3, 32 - 12]}
# a += b; d ^= a; d <<<= 8;
@{[vadd_vv $A0, $A0, $B0]}
add $S_A0, $S_A0, $S_B0
@{[vadd_vv $A1, $A1, $B1]}
add $S_A1, $S_A1, $S_B1
@{[vadd_vv $A2, $A2, $B2]}
add $S_A2, $S_A2, $S_B2
@{[vadd_vv $A3, $A3, $B3]}
add $S_A3, $S_A3, $S_B3
@{[vxor_vv $D0, $D0, $A0]}
xor $S_D0, $S_D0, $S_A0
@{[vxor_vv $D1, $D1, $A1]}
xor $S_D1, $S_D1, $S_A1
@{[vxor_vv $D2, $D2, $A2]}
xor $S_D2, $S_D2, $S_A2
@{[vxor_vv $D3, $D3, $A3]}
xor $S_D3, $S_D3, $S_A3
@{[vror_vi $D0, $D0, 32 - 8]}
@{[roriw $S_D0, $S_D0, 32 - 8]}
@{[vror_vi $D1, $D1, 32 - 8]}
@{[roriw $S_D1, $S_D1, 32 - 8]}
@{[vror_vi $D2, $D2, 32 - 8]}
@{[roriw $S_D2, $S_D2, 32 - 8]}
@{[vror_vi $D3, $D3, 32 - 8]}
@{[roriw $S_D3, $S_D3, 32 - 8]}
# c += d; b ^= c; b <<<= 7;
@{[vadd_vv $C0, $C0, $D0]}
add $S_C0, $S_C0, $S_D0
@{[vadd_vv $C1, $C1, $D1]}
add $S_C1, $S_C1, $S_D1
@{[vadd_vv $C2, $C2, $D2]}
add $S_C2, $S_C2, $S_D2
@{[vadd_vv $C3, $C3, $D3]}
add $S_C3, $S_C3, $S_D3
@{[vxor_vv $B0, $B0, $C0]}
xor $S_B0, $S_B0, $S_C0
@{[vxor_vv $B1, $B1, $C1]}
xor $S_B1, $S_B1, $S_C1
@{[vxor_vv $B2, $B2, $C2]}
xor $S_B2, $S_B2, $S_C2
@{[vxor_vv $B3, $B3, $C3]}
xor $S_B3, $S_B3, $S_C3
@{[vror_vi $B0, $B0, 32 - 7]}
@{[roriw $S_B0, $S_B0, 32 - 7]}
@{[vror_vi $B1, $B1, 32 - 7]}
@{[roriw $S_B1, $S_B1, 32 - 7]}
@{[vror_vi $B2, $B2, 32 - 7]}
@{[roriw $S_B2, $S_B2, 32 - 7]}
@{[vror_vi $B3, $B3, 32 - 7]}
@{[roriw $S_B3, $S_B3, 32 - 7]}
___
return $code;
@ -144,12 +211,9 @@ ___
$code .= <<___;
.p2align 3
.globl ChaCha20_ctr32_zvkb
.type ChaCha20_ctr32_zvkb,\@function
ChaCha20_ctr32_zvkb:
srli $LEN, $LEN, 6
beqz $LEN, .Lend
.globl ChaCha20_ctr32_zbb_zvkb
.type ChaCha20_ctr32_zbb_zvkb,\@function
ChaCha20_ctr32_zbb_zvkb:
addi sp, sp, -96
sd s0, 0(sp)
sd s1, 8(sp)
@ -163,139 +227,232 @@ ChaCha20_ctr32_zvkb:
sd s9, 72(sp)
sd s10, 80(sp)
sd s11, 88(sp)
addi sp, sp, -64
li $STRIDE, 64
#### chacha block data
# "expa" little endian
li $CONST_DATA0, 0x61707865
# "nd 3" little endian
li $CONST_DATA1, 0x3320646e
# "2-by" little endian
li $CONST_DATA2, 0x79622d32
# "te k" little endian
li $CONST_DATA3, 0x6b206574
lw $KEY0, 0($KEY)
lw $KEY1, 4($KEY)
lw $KEY2, 8($KEY)
lw $KEY3, 12($KEY)
lw $KEY4, 16($KEY)
lw $KEY5, 20($KEY)
lw $KEY6, 24($KEY)
lw $KEY7, 28($KEY)
lw $COUNTER0, 0($COUNTER)
lw $COUNTER1, 4($COUNTER)
lw $NONCE0, 8($COUNTER)
lw $NONCE1, 12($COUNTER)
lw $CURRENT_COUNTER, 0($COUNTER)
.Lblock_loop:
@{[vsetvli $VL, $LEN, "e32", "m1", "ta", "ma"]}
# We will use the scalar ALU for 1 chacha block.
srli $T0, $LEN, 6
@{[vsetvli $VL, $T0, "e32", "m1", "ta", "ma"]}
slli $T1, $VL, 6
bltu $T1, $LEN, 1f
# Since there is no more chacha block existed, we need to split 1 block
# from vector ALU.
addi $T1, $VL, -1
@{[vsetvli $VL, $T1, "e32", "m1", "ta", "ma"]}
1:
#### chacha block data
# init chacha const states
# "expa" little endian
li $CONST_DATA0, 0x61707865
@{[vmv_v_x $V0, $CONST_DATA0]}
# "nd 3" little endian
li $CONST_DATA1, 0x3320646e
@{[vmv_v_x $V1, $CONST_DATA1]}
# "2-by" little endian
li $CONST_DATA2, 0x79622d32
@{[vmv_v_x $V2, $CONST_DATA2]}
# "te k" little endian
li $CONST_DATA3, 0x6b206574
lw $KEY0, 0($KEY)
@{[vmv_v_x $V3, $CONST_DATA3]}
# init chacha key states
lw $KEY1, 4($KEY)
@{[vmv_v_x $V4, $KEY0]}
lw $KEY2, 8($KEY)
@{[vmv_v_x $V5, $KEY1]}
lw $KEY3, 12($KEY)
@{[vmv_v_x $V6, $KEY2]}
lw $KEY4, 16($KEY)
@{[vmv_v_x $V7, $KEY3]}
lw $KEY5, 20($KEY)
@{[vmv_v_x $V8, $KEY4]}
lw $KEY6, 24($KEY)
@{[vmv_v_x $V9, $KEY5]}
lw $KEY7, 28($KEY)
@{[vmv_v_x $V10, $KEY6]}
@{[vmv_v_x $V11, $KEY7]}
# init chacha key states
lw $COUNTER1, 4($COUNTER)
@{[vid_v $V12]}
@{[vadd_vx $V12, $V12, $COUNTER0]}
lw $NONCE0, 8($COUNTER)
@{[vadd_vx $V12, $V12, $CURRENT_COUNTER]}
lw $NONCE1, 12($COUNTER)
@{[vmv_v_x $V13, $COUNTER1]}
add $COUNTER0, $CURRENT_COUNTER, $VL
# init chacha nonce states
@{[vmv_v_x $V14, $NONCE0]}
@{[vmv_v_x $V15, $NONCE1]}
li $T0, 64
# load the top-half of input data
@{[vlsseg_nf_e32_v 8, $V16, $INPUT, $STRIDE]}
@{[vlsseg_nf_e32_v 8, $V16, $INPUT, $T0]}
li $CHACHA_LOOP_COUNT, 10
# 20 round groups
li $T0, 10
.Lround_loop:
addi $CHACHA_LOOP_COUNT, $CHACHA_LOOP_COUNT, -1
addi $T0, $T0, -1
@{[chacha_quad_round_group
$V0, $V4, $V8, $V12,
$V1, $V5, $V9, $V13,
$V2, $V6, $V10, $V14,
$V3, $V7, $V11, $V15]}
$V3, $V7, $V11, $V15,
$STATE0, $STATE4, $STATE8, $STATE12,
$STATE1, $STATE5, $STATE9, $STATE13,
$STATE2, $STATE6, $STATE10, $STATE14,
$STATE3, $STATE7, $STATE11, $STATE15]}
@{[chacha_quad_round_group
$V3, $V4, $V9, $V14,
$V0, $V5, $V10, $V15,
$V1, $V6, $V11, $V12,
$V2, $V7, $V8, $V13,
$V3, $V4, $V9, $V14]}
bnez $CHACHA_LOOP_COUNT, .Lround_loop
$STATE3, $STATE4, $STATE9, $STATE14,
$STATE0, $STATE5, $STATE10, $STATE15,
$STATE1, $STATE6, $STATE11, $STATE12,
$STATE2, $STATE7, $STATE8, $STATE13]}
bnez $T0, .Lround_loop
li $T0, 64
# load the bottom-half of input data
addi $T0, $INPUT, 32
@{[vlsseg_nf_e32_v 8, $V24, $T0, $STRIDE]}
addi $T1, $INPUT, 32
@{[vlsseg_nf_e32_v 8, $V24, $T1, $T0]}
# add chacha top-half initial block states
@{[vadd_vx $V0, $V0, $CONST_DATA0]}
@{[vadd_vx $V1, $V1, $CONST_DATA1]}
@{[vadd_vx $V2, $V2, $CONST_DATA2]}
@{[vadd_vx $V3, $V3, $CONST_DATA3]}
@{[vadd_vx $V4, $V4, $KEY0]}
@{[vadd_vx $V5, $V5, $KEY1]}
@{[vadd_vx $V6, $V6, $KEY2]}
@{[vadd_vx $V7, $V7, $KEY3]}
# "expa" little endian
li $T0, 0x61707865
@{[vadd_vx $V0, $V0, $T0]}
add $STATE0, $STATE0, $T0
# "nd 3" little endian
li $T1, 0x3320646e
@{[vadd_vx $V1, $V1, $T1]}
add $STATE1, $STATE1, $T1
lw $T0, 0($KEY)
# "2-by" little endian
li $T2, 0x79622d32
@{[vadd_vx $V2, $V2, $T2]}
add $STATE2, $STATE2, $T2
lw $T1, 4($KEY)
# "te k" little endian
li $T3, 0x6b206574
@{[vadd_vx $V3, $V3, $T3]}
add $STATE3, $STATE3, $T3
lw $T2, 8($KEY)
@{[vadd_vx $V4, $V4, $T0]}
add $STATE4, $STATE4, $T0
lw $T3, 12($KEY)
@{[vadd_vx $V5, $V5, $T1]}
add $STATE5, $STATE5, $T1
@{[vadd_vx $V6, $V6, $T2]}
add $STATE6, $STATE6, $T2
@{[vadd_vx $V7, $V7, $T3]}
add $STATE7, $STATE7, $T3
# xor with the top-half input
@{[vxor_vv $V16, $V16, $V0]}
sw $STATE0, 0(sp)
sw $STATE1, 4(sp)
@{[vxor_vv $V17, $V17, $V1]}
sw $STATE2, 8(sp)
sw $STATE3, 12(sp)
@{[vxor_vv $V18, $V18, $V2]}
sw $STATE4, 16(sp)
sw $STATE5, 20(sp)
@{[vxor_vv $V19, $V19, $V3]}
sw $STATE6, 24(sp)
sw $STATE7, 28(sp)
@{[vxor_vv $V20, $V20, $V4]}
lw $T0, 16($KEY)
@{[vxor_vv $V21, $V21, $V5]}
lw $T1, 20($KEY)
@{[vxor_vv $V22, $V22, $V6]}
lw $T2, 24($KEY)
@{[vxor_vv $V23, $V23, $V7]}
# save the top-half of output
@{[vssseg_nf_e32_v 8, $V16, $OUTPUT, $STRIDE]}
li $T3, 64
@{[vssseg_nf_e32_v 8, $V16, $OUTPUT, $T3]}
# add chacha bottom-half initial block states
@{[vadd_vx $V8, $V8, $KEY4]}
@{[vadd_vx $V9, $V9, $KEY5]}
@{[vadd_vx $V10, $V10, $KEY6]}
@{[vadd_vx $V11, $V11, $KEY7]}
@{[vadd_vx $V8, $V8, $T0]}
add $STATE8, $STATE8, $T0
lw $T3, 28($KEY)
@{[vadd_vx $V9, $V9, $T1]}
add $STATE9, $STATE9, $T1
lw $T0, 4($COUNTER)
@{[vadd_vx $V10, $V10, $T2]}
add $STATE10, $STATE10, $T2
lw $T1, 8($COUNTER)
@{[vadd_vx $V11, $V11, $T3]}
add $STATE11, $STATE11, $T3
lw $T2, 12($COUNTER)
@{[vid_v $V0]}
@{[vadd_vx $V12, $V12, $COUNTER0]}
@{[vadd_vx $V13, $V13, $COUNTER1]}
@{[vadd_vx $V14, $V14, $NONCE0]}
@{[vadd_vx $V15, $V15, $NONCE1]}
add $STATE12, $STATE12, $CURRENT_COUNTER
@{[vadd_vx $V12, $V12, $CURRENT_COUNTER]}
add $STATE12, $STATE12, $VL
@{[vadd_vx $V13, $V13, $T0]}
add $STATE13, $STATE13, $T0
@{[vadd_vx $V14, $V14, $T1]}
add $STATE14, $STATE14, $T1
@{[vadd_vx $V15, $V15, $T2]}
add $STATE15, $STATE15, $T2
@{[vadd_vv $V12, $V12, $V0]}
# xor with the bottom-half input
@{[vxor_vv $V24, $V24, $V8]}
sw $STATE8, 32(sp)
@{[vxor_vv $V25, $V25, $V9]}
sw $STATE9, 36(sp)
@{[vxor_vv $V26, $V26, $V10]}
sw $STATE10, 40(sp)
@{[vxor_vv $V27, $V27, $V11]}
sw $STATE11, 44(sp)
@{[vxor_vv $V29, $V29, $V13]}
sw $STATE12, 48(sp)
@{[vxor_vv $V28, $V28, $V12]}
sw $STATE13, 52(sp)
@{[vxor_vv $V30, $V30, $V14]}
sw $STATE14, 56(sp)
@{[vxor_vv $V31, $V31, $V15]}
sw $STATE15, 60(sp)
# save the bottom-half of output
addi $T0, $OUTPUT, 32
@{[vssseg_nf_e32_v 8, $V24, $T0, $STRIDE]}
li $T0, 64
addi $T1, $OUTPUT, 32
@{[vssseg_nf_e32_v 8, $V24, $T1, $T0]}
# update counter
add $COUNTER0, $COUNTER0, $VL
sub $LEN, $LEN, $VL
# increase offset for `4 * 16 * VL = 64 * VL`
# the computed vector parts: `64 * VL`
slli $T0, $VL, 6
add $INPUT, $INPUT, $T0
add $OUTPUT, $OUTPUT, $T0
sub $LEN, $LEN, $T0
add $CURRENT_COUNTER, $CURRENT_COUNTER, $VL
# process the scalar data block
addi $CURRENT_COUNTER, $CURRENT_COUNTER, 1
li $T0, 64
@{[minu $T1, $LEN, $T0]}
sub $LEN, $LEN, $T1
mv $T2, sp
.Lscalar_data_loop:
@{[vsetvli $VL, $T1, "e8", "m8", "ta", "ma"]}
@{[vle8_v $V8, $INPUT]}
@{[vle8_v $V16, $T2]}
@{[vxor_vv $V8, $V8, $V16]}
@{[vse8_v $V8, $OUTPUT]}
add $INPUT, $INPUT, $VL
add $OUTPUT, $OUTPUT, $VL
add $T2, $T2, $VL
sub $T1, $T1, $VL
bnez $T1, .Lscalar_data_loop
bnez $LEN, .Lblock_loop
addi sp, sp, 64
ld s0, 0(sp)
ld s1, 8(sp)
ld s2, 16(sp)
@ -310,9 +467,8 @@ ChaCha20_ctr32_zvkb:
ld s11, 88(sp)
addi sp, sp, 96
.Lend:
ret
.size ChaCha20_ctr32_zvkb,.-ChaCha20_ctr32_zvkb
.size ChaCha20_ctr32_zbb_zvkb,.-ChaCha20_ctr32_zbb_zvkb
___
print $code;

View File

@ -22,7 +22,7 @@ IF[{- !$disabled{asm} -}]
$CHACHAASM_c64xplus=chacha-c64xplus.s
$CHACHAASM_riscv64=chacha_riscv.c chacha_enc.c chacha-riscv64-zvkb.s
$CHACHAASM_riscv64=chacha_riscv.c chacha_enc.c chacha-riscv64-zbb-zvkb.s
$CHACHADEF_riscv64=INCLUDE_C_CHACHA20
# Now that we have defined all the arch specific variables, use the
@ -53,4 +53,4 @@ GENERATE[chacha-s390x.S]=asm/chacha-s390x.pl
GENERATE[chacha-ia64.S]=asm/chacha-ia64.pl
GENERATE[chacha-ia64.s]=chacha-ia64.S
GENERATE[chacha-loongarch64.S]=asm/chacha-loongarch64.pl
GENERATE[chacha-riscv64-zvkb.s]=asm/chacha-riscv64-zvkb.pl
GENERATE[chacha-riscv64-zbb-zvkb.s]=asm/chacha-riscv64-zbb-zvkb.pl

View File

@ -40,15 +40,16 @@
#include "crypto/chacha.h"
#include "crypto/riscv_arch.h"
void ChaCha20_ctr32_zvkb(unsigned char *out, const unsigned char *inp,
size_t len, const unsigned int key[8],
const unsigned int counter[4]);
void ChaCha20_ctr32_zbb_zvkb(unsigned char *out, const unsigned char *inp,
size_t len, const unsigned int key[8],
const unsigned int counter[4]);
void ChaCha20_ctr32(unsigned char *out, const unsigned char *inp, size_t len,
const unsigned int key[8], const unsigned int counter[4])
{
if (RISCV_HAS_ZVKB() && riscv_vlen() >= 128) {
ChaCha20_ctr32_zvkb(out, inp, len, key, counter);
if (len > CHACHA_BLK_SIZE && RISCV_HAS_ZVKB() && RISCV_HAS_ZBB() &&
riscv_vlen() >= 128) {
ChaCha20_ctr32_zbb_zvkb(out, inp, len, key, counter);
} else {
ChaCha20_ctr32_c(out, inp, len, key, counter);
}

View File

@ -384,6 +384,36 @@ sub rev8 {
return ".word ".($template | ($rs << 15) | ($rd << 7));
}
sub roriw {
# Encoding for roriw rd, rs1, shamt instruction on RV64
# XXXXXXX_ shamt _ rs1 _XXX_ rd _XXXXXXX
my $template = 0b0110000_00000_00000_101_00000_0011011;
my $rd = read_reg shift;
my $rs1 = read_reg shift;
my $shamt = shift;
return ".word ".($template | ($shamt << 20) | ($rs1 << 15) | ($rd << 7));
}
sub maxu {
# Encoding for maxu rd, rs1, rs2 instruction on RV64
# XXXXXXX_ rs2 _ rs1 _XXX_ rd _XXXXXXX
my $template = 0b0000101_00000_00000_111_00000_0110011;
my $rd = read_reg shift;
my $rs1 = read_reg shift;
my $rs2 = read_reg shift;
return ".word ".($template | ($rs2 << 20) | ($rs1 << 15) | ($rd << 7));
}
sub minu {
# Encoding for minu rd, rs1, rs2 instruction on RV64
# XXXXXXX_ rs2 _ rs1 _XXX_ rd _XXXXXXX
my $template = 0b0000101_00000_00000_101_00000_0110011;
my $rd = read_reg shift;
my $rs1 = read_reg shift;
my $rs2 = read_reg shift;
return ".word ".($template | ($rs2 << 20) | ($rs1 << 15) | ($rd << 7));
}
# Vector instructions
sub vadd_vv {