openssl/crypto/threads_pthread.c

980 lines
28 KiB
C

/*
* Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/* We need to use the OPENSSL_fork_*() deprecated APIs */
#define OPENSSL_SUPPRESS_DEPRECATED
#include <openssl/crypto.h>
#include <crypto/cryptlib.h>
#include "internal/cryptlib.h"
#include "internal/rcu.h"
#include "rcu_internal.h"
#if defined(__clang__) && defined(__has_feature)
# if __has_feature(thread_sanitizer)
# define __SANITIZE_THREAD__
# endif
#endif
#if defined(__SANITIZE_THREAD__)
# include <sanitizer/tsan_interface.h>
# define TSAN_FAKE_UNLOCK(x) __tsan_mutex_pre_unlock((x), 0); \
__tsan_mutex_post_unlock((x), 0)
# define TSAN_FAKE_LOCK(x) __tsan_mutex_pre_lock((x), 0); \
__tsan_mutex_post_lock((x), 0, 0)
#else
# define TSAN_FAKE_UNLOCK(x)
# define TSAN_FAKE_LOCK(x)
#endif
#if defined(__sun)
# include <atomic.h>
#endif
#if defined(__apple_build_version__) && __apple_build_version__ < 6000000
/*
* OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
* __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
* rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
* All of this makes impossible to use __atomic_is_lock_free here.
*
* See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
*/
# define BROKEN_CLANG_ATOMICS
#endif
#if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
# if defined(OPENSSL_SYS_UNIX)
# include <sys/types.h>
# include <unistd.h>
# endif
# include <assert.h>
# ifdef PTHREAD_RWLOCK_INITIALIZER
# define USE_RWLOCK
# endif
/*
* For all GNU/clang atomic builtins, we also need fallbacks, to cover all
* other compilers.
* Unfortunately, we can't do that with some "generic type", because there's no
* guarantee that the chosen generic type is large enough to cover all cases.
* Therefore, we implement fallbacks for each applicable type, with composed
* names that include the type they handle.
*
* (an anecdote: we previously tried to use |void *| as the generic type, with
* the thought that the pointer itself is the largest type. However, this is
* not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
*
* All applicable ATOMIC_ macros take the intended type as first parameter, so
* they can map to the correct fallback function. In the GNU/clang case, that
* parameter is simply ignored.
*/
/*
* Internal types used with the ATOMIC_ macros, to make it possible to compose
* fallback function names.
*/
typedef void *pvoid;
typedef struct rcu_cb_item *prcu_cb_item;
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
&& !defined(USE_ATOMIC_FALLBACKS)
# if defined(__APPLE__) && defined(__clang__) && defined(__aarch64__)
/*
* For pointers, Apple M1 virtualized cpu seems to have some problem using the
* ldapr instruction (see https://github.com/openssl/openssl/pull/23974)
* When using the native apple clang compiler, this instruction is emitted for
* atomic loads, which is bad. So, if
* 1) We are building on a target that defines __APPLE__ AND
* 2) We are building on a target using clang (__clang__) AND
* 3) We are building for an M1 processor (__aarch64__)
* Then we should not use __atomic_load_n and instead implement our own
* function to issue the ldar instruction instead, which produces the proper
* sequencing guarantees
*/
static inline void *apple_atomic_load_n_pvoid(void **p,
ossl_unused int memorder)
{
void *ret;
__asm volatile("ldar %0, [%1]" : "=r" (ret): "r" (p):);
return ret;
}
/* For uint64_t, we should be fine, though */
# define apple_atomic_load_n_uint64_t(p, o) __atomic_load_n(p, o)
# define ATOMIC_LOAD_N(t, p, o) apple_atomic_load_n_##t(p, o)
# else
# define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
# endif
# define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
# define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
# define ATOMIC_EXCHANGE_N(t, p, v, o) __atomic_exchange_n(p, v, o)
# define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
# define ATOMIC_FETCH_ADD(p, v, o) __atomic_fetch_add(p, v, o)
# define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
# define ATOMIC_AND_FETCH(p, m, o) __atomic_and_fetch(p, m, o)
# define ATOMIC_OR_FETCH(p, m, o) __atomic_or_fetch(p, m, o)
# else
static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
# define IMPL_fallback_atomic_load_n(t) \
static inline t fallback_atomic_load_n_##t(t *p) \
{ \
t ret; \
\
pthread_mutex_lock(&atomic_sim_lock); \
ret = *p; \
pthread_mutex_unlock(&atomic_sim_lock); \
return ret; \
}
IMPL_fallback_atomic_load_n(uint64_t)
IMPL_fallback_atomic_load_n(pvoid)
# define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
# define IMPL_fallback_atomic_store_n(t) \
static inline t fallback_atomic_store_n_##t(t *p, t v) \
{ \
t ret; \
\
pthread_mutex_lock(&atomic_sim_lock); \
ret = *p; \
*p = v; \
pthread_mutex_unlock(&atomic_sim_lock); \
return ret; \
}
IMPL_fallback_atomic_store_n(uint64_t)
# define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
# define IMPL_fallback_atomic_store(t) \
static inline void fallback_atomic_store_##t(t *p, t *v) \
{ \
pthread_mutex_lock(&atomic_sim_lock); \
*p = *v; \
pthread_mutex_unlock(&atomic_sim_lock); \
}
IMPL_fallback_atomic_store(uint64_t)
IMPL_fallback_atomic_store(pvoid)
# define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
# define IMPL_fallback_atomic_exchange_n(t) \
static inline t fallback_atomic_exchange_n_##t(t *p, t v) \
{ \
t ret; \
\
pthread_mutex_lock(&atomic_sim_lock); \
ret = *p; \
*p = v; \
pthread_mutex_unlock(&atomic_sim_lock); \
return ret; \
}
IMPL_fallback_atomic_exchange_n(uint64_t)
IMPL_fallback_atomic_exchange_n(prcu_cb_item)
# define ATOMIC_EXCHANGE_N(t, p, v, o) fallback_atomic_exchange_n_##t(p, v)
/*
* The fallbacks that follow don't need any per type implementation, as
* they are designed for uint64_t only. If there comes a time when multiple
* types need to be covered, it's relatively easy to refactor them the same
* way as the fallbacks above.
*/
static inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
{
uint64_t ret;
pthread_mutex_lock(&atomic_sim_lock);
*p += v;
ret = *p;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
# define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
static inline uint64_t fallback_atomic_fetch_add(uint64_t *p, uint64_t v)
{
uint64_t ret;
pthread_mutex_lock(&atomic_sim_lock);
ret = *p;
*p += v;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
# define ATOMIC_FETCH_ADD(p, v, o) fallback_atomic_fetch_add(p, v)
static inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
{
uint64_t ret;
pthread_mutex_lock(&atomic_sim_lock);
*p -= v;
ret = *p;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
# define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
static inline uint64_t fallback_atomic_and_fetch(uint64_t *p, uint64_t m)
{
uint64_t ret;
pthread_mutex_lock(&atomic_sim_lock);
*p &= m;
ret = *p;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
# define ATOMIC_AND_FETCH(p, v, o) fallback_atomic_and_fetch(p, v)
static inline uint64_t fallback_atomic_or_fetch(uint64_t *p, uint64_t m)
{
uint64_t ret;
pthread_mutex_lock(&atomic_sim_lock);
*p |= m;
ret = *p;
pthread_mutex_unlock(&atomic_sim_lock);
return ret;
}
# define ATOMIC_OR_FETCH(p, v, o) fallback_atomic_or_fetch(p, v)
# endif
/*
* users is broken up into 2 parts
* bits 0-15 current readers
* bit 32-63 - ID
*/
# define READER_SHIFT 0
# define ID_SHIFT 32
# define READER_SIZE 16
# define ID_SIZE 32
# define READER_MASK (((uint64_t)1 << READER_SIZE) - 1)
# define ID_MASK (((uint64_t)1 << ID_SIZE) - 1)
# define READER_COUNT(x) (((uint64_t)(x) >> READER_SHIFT) & READER_MASK)
# define ID_VAL(x) (((uint64_t)(x) >> ID_SHIFT) & ID_MASK)
# define VAL_READER ((uint64_t)1 << READER_SHIFT)
# define VAL_ID(x) ((uint64_t)x << ID_SHIFT)
/*
* This is the core of an rcu lock. It tracks the readers and writers for the
* current quiescence point for a given lock. Users is the 64 bit value that
* stores the READERS/ID as defined above
*
*/
struct rcu_qp {
uint64_t users;
};
struct thread_qp {
struct rcu_qp *qp;
unsigned int depth;
CRYPTO_RCU_LOCK *lock;
};
# define MAX_QPS 10
/*
* This is the per thread tracking data
* that is assigned to each thread participating
* in an rcu qp
*
* qp points to the qp that it last acquired
*
*/
struct rcu_thr_data {
struct thread_qp thread_qps[MAX_QPS];
};
/*
* This is the internal version of a CRYPTO_RCU_LOCK
* it is cast from CRYPTO_RCU_LOCK
*/
struct rcu_lock_st {
/* Callbacks to call for next ossl_synchronize_rcu */
struct rcu_cb_item *cb_items;
/* The context we are being created against */
OSSL_LIB_CTX *ctx;
/* rcu generation counter for in-order retirement */
uint32_t id_ctr;
/* Array of quiescent points for synchronization */
struct rcu_qp *qp_group;
/* Number of elements in qp_group array */
size_t group_count;
/* Index of the current qp in the qp_group array */
uint64_t reader_idx;
/* value of the next id_ctr value to be retired */
uint32_t next_to_retire;
/* index of the next free rcu_qp in the qp_group */
uint64_t current_alloc_idx;
/* number of qp's in qp_group array currently being retired */
uint32_t writers_alloced;
/* lock protecting write side operations */
pthread_mutex_t write_lock;
/* lock protecting updates to writers_alloced/current_alloc_idx */
pthread_mutex_t alloc_lock;
/* signal to wake threads waiting on alloc_lock */
pthread_cond_t alloc_signal;
/* lock to enforce in-order retirement */
pthread_mutex_t prior_lock;
/* signal to wake threads waiting on prior_lock */
pthread_cond_t prior_signal;
};
/* Read side acquisition of the current qp */
static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
{
uint64_t qp_idx;
/* get the current qp index */
for (;;) {
/*
* Notes on use of __ATOMIC_ACQUIRE
* We need to ensure the following:
* 1) That subsequent operations aren't optimized by hoisting them above
* this operation. Specifically, we don't want the below re-load of
* qp_idx to get optimized away
* 2) We want to ensure that any updating of reader_idx on the write side
* of the lock is flushed from a local cpu cache so that we see any
* updates prior to the load. This is a non-issue on cache coherent
* systems like x86, but is relevant on other arches
* Note: This applies to the reload below as well
*/
qp_idx = ATOMIC_LOAD_N(uint64_t, &lock->reader_idx, __ATOMIC_ACQUIRE);
/*
* Notes of use of __ATOMIC_RELEASE
* This counter is only read by the write side of the lock, and so we
* specify __ATOMIC_RELEASE here to ensure that the write side of the
* lock see this during the spin loop read of users, as it waits for the
* reader count to approach zero
*/
ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
__ATOMIC_RELEASE);
/* if the idx hasn't changed, we're good, else try again */
if (qp_idx == ATOMIC_LOAD_N(uint64_t, &lock->reader_idx, __ATOMIC_ACQUIRE))
break;
/*
* Notes on use of __ATOMIC_RELEASE
* As with the add above, we want to ensure that this decrement is
* seen by the write side of the lock as soon as it happens to prevent
* undue spinning waiting for write side completion
*/
ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
__ATOMIC_RELEASE);
}
return &lock->qp_group[qp_idx];
}
static void ossl_rcu_free_local_data(void *arg)
{
OSSL_LIB_CTX *ctx = arg;
CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
OPENSSL_free(data);
}
void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
{
struct rcu_thr_data *data;
int i, available_qp = -1;
CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
/*
* we're going to access current_qp here so ask the
* processor to fetch it
*/
data = CRYPTO_THREAD_get_local(lkey);
if (data == NULL) {
data = OPENSSL_zalloc(sizeof(*data));
OPENSSL_assert(data != NULL);
CRYPTO_THREAD_set_local(lkey, data);
ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
}
for (i = 0; i < MAX_QPS; i++) {
if (data->thread_qps[i].qp == NULL && available_qp == -1)
available_qp = i;
/* If we have a hold on this lock already, we're good */
if (data->thread_qps[i].lock == lock) {
data->thread_qps[i].depth++;
return;
}
}
/*
* if we get here, then we don't have a hold on this lock yet
*/
assert(available_qp != -1);
data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
data->thread_qps[available_qp].depth = 1;
data->thread_qps[available_qp].lock = lock;
}
void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
{
int i;
CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
uint64_t ret;
assert(data != NULL);
for (i = 0; i < MAX_QPS; i++) {
if (data->thread_qps[i].lock == lock) {
/*
* As with read side acquisition, we use __ATOMIC_RELEASE here
* to ensure that the decrement is published immediately
* to any write side waiters
*/
data->thread_qps[i].depth--;
if (data->thread_qps[i].depth == 0) {
ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users, VAL_READER,
__ATOMIC_RELEASE);
OPENSSL_assert(ret != UINT64_MAX);
data->thread_qps[i].qp = NULL;
data->thread_qps[i].lock = NULL;
}
return;
}
}
/*
* If we get here, we're trying to unlock a lock that we never acquired -
* that's fatal.
*/
assert(0);
}
/*
* Write side allocation routine to get the current qp
* and replace it with a new one
*/
static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
{
uint64_t new_id;
uint64_t current_idx;
pthread_mutex_lock(&lock->alloc_lock);
/*
* we need at least one qp to be available with one
* left over, so that readers can start working on
* one that isn't yet being waited on
*/
while (lock->group_count - lock->writers_alloced < 2)
/* we have to wait for one to be free */
pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
current_idx = lock->current_alloc_idx;
/* Allocate the qp */
lock->writers_alloced++;
/* increment the allocation index */
lock->current_alloc_idx =
(lock->current_alloc_idx + 1) % lock->group_count;
/* get and insert a new id */
new_id = lock->id_ctr;
lock->id_ctr++;
new_id = VAL_ID(new_id);
/*
* Even though we are under a write side lock here
* We need to use atomic instructions to ensure that the results
* of this update are published to the read side prior to updating the
* reader idx below
*/
ATOMIC_AND_FETCH(&lock->qp_group[current_idx].users, ID_MASK,
__ATOMIC_RELEASE);
ATOMIC_OR_FETCH(&lock->qp_group[current_idx].users, new_id,
__ATOMIC_RELEASE);
/*
* Update the reader index to be the prior qp.
* Note the use of __ATOMIC_RELEASE here is based on the corresponding use
* of __ATOMIC_ACQUIRE in get_hold_current_qp, as we want any publication
* of this value to be seen on the read side immediately after it happens
*/
ATOMIC_STORE_N(uint64_t, &lock->reader_idx, lock->current_alloc_idx,
__ATOMIC_RELEASE);
/* wake up any waiters */
pthread_cond_signal(&lock->alloc_signal);
pthread_mutex_unlock(&lock->alloc_lock);
return &lock->qp_group[current_idx];
}
static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
{
pthread_mutex_lock(&lock->alloc_lock);
lock->writers_alloced--;
pthread_cond_signal(&lock->alloc_signal);
pthread_mutex_unlock(&lock->alloc_lock);
}
static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
int count)
{
struct rcu_qp *new =
OPENSSL_zalloc(sizeof(*new) * count);
lock->group_count = count;
return new;
}
void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
{
pthread_mutex_lock(&lock->write_lock);
TSAN_FAKE_UNLOCK(&lock->write_lock);
}
void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
{
TSAN_FAKE_LOCK(&lock->write_lock);
pthread_mutex_unlock(&lock->write_lock);
}
void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
{
struct rcu_qp *qp;
uint64_t count;
struct rcu_cb_item *cb_items, *tmpcb;
pthread_mutex_lock(&lock->write_lock);
cb_items = lock->cb_items;
lock->cb_items = NULL;
pthread_mutex_unlock(&lock->write_lock);
qp = update_qp(lock);
/*
* wait for the reader count to reach zero
* Note the use of __ATOMIC_ACQUIRE here to ensure that any
* prior __ATOMIC_RELEASE write operation in get_hold_current_qp
* is visible prior to our read
*/
do {
count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
} while (READER_COUNT(count) != 0);
/* retire in order */
pthread_mutex_lock(&lock->prior_lock);
while (lock->next_to_retire != ID_VAL(count))
pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
lock->next_to_retire++;
pthread_cond_broadcast(&lock->prior_signal);
pthread_mutex_unlock(&lock->prior_lock);
retire_qp(lock, qp);
/* handle any callbacks that we have */
while (cb_items != NULL) {
tmpcb = cb_items;
cb_items = cb_items->next;
tmpcb->fn(tmpcb->data);
OPENSSL_free(tmpcb);
}
}
int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
{
struct rcu_cb_item *new =
OPENSSL_zalloc(sizeof(*new));
if (new == NULL)
return 0;
new->data = data;
new->fn = cb;
/*
* Use __ATOMIC_ACQ_REL here to indicate that any prior writes to this
* list are visible to us prior to reading, and publish the new value
* immediately
*/
new->next = ATOMIC_EXCHANGE_N(prcu_cb_item, &lock->cb_items, new,
__ATOMIC_ACQ_REL);
return 1;
}
void *ossl_rcu_uptr_deref(void **p)
{
return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
}
void ossl_rcu_assign_uptr(void **p, void **v)
{
ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
}
CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
{
struct rcu_lock_st *new;
if (num_writers < 1)
num_writers = 1;
ctx = ossl_lib_ctx_get_concrete(ctx);
if (ctx == NULL)
return 0;
new = OPENSSL_zalloc(sizeof(*new));
if (new == NULL)
return NULL;
new->ctx = ctx;
pthread_mutex_init(&new->write_lock, NULL);
pthread_mutex_init(&new->prior_lock, NULL);
pthread_mutex_init(&new->alloc_lock, NULL);
pthread_cond_init(&new->prior_signal, NULL);
pthread_cond_init(&new->alloc_signal, NULL);
new->qp_group = allocate_new_qp_group(new, num_writers + 1);
if (new->qp_group == NULL) {
OPENSSL_free(new);
new = NULL;
}
return new;
}
void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
{
struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
if (lock == NULL)
return;
/* make sure we're synchronized */
ossl_synchronize_rcu(rlock);
OPENSSL_free(rlock->qp_group);
/* There should only be a single qp left now */
OPENSSL_free(rlock);
}
CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
{
# ifdef USE_RWLOCK
CRYPTO_RWLOCK *lock;
if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
/* Don't set error, to avoid recursion blowup. */
return NULL;
if (pthread_rwlock_init(lock, NULL) != 0) {
OPENSSL_free(lock);
return NULL;
}
# else
pthread_mutexattr_t attr;
CRYPTO_RWLOCK *lock;
if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
/* Don't set error, to avoid recursion blowup. */
return NULL;
/*
* We don't use recursive mutexes, but try to catch errors if we do.
*/
pthread_mutexattr_init(&attr);
# if !defined (__TANDEM) && !defined (_SPT_MODEL_)
# if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
# endif
# else
/* The SPT Thread Library does not define MUTEX attributes. */
# endif
if (pthread_mutex_init(lock, &attr) != 0) {
pthread_mutexattr_destroy(&attr);
OPENSSL_free(lock);
return NULL;
}
pthread_mutexattr_destroy(&attr);
# endif
return lock;
}
__owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
if (pthread_rwlock_rdlock(lock) != 0)
return 0;
# else
if (pthread_mutex_lock(lock) != 0) {
assert(errno != EDEADLK && errno != EBUSY);
return 0;
}
# endif
return 1;
}
__owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
if (pthread_rwlock_wrlock(lock) != 0)
return 0;
# else
if (pthread_mutex_lock(lock) != 0) {
assert(errno != EDEADLK && errno != EBUSY);
return 0;
}
# endif
return 1;
}
int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
{
# ifdef USE_RWLOCK
if (pthread_rwlock_unlock(lock) != 0)
return 0;
# else
if (pthread_mutex_unlock(lock) != 0) {
assert(errno != EPERM);
return 0;
}
# endif
return 1;
}
void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
{
if (lock == NULL)
return;
# ifdef USE_RWLOCK
pthread_rwlock_destroy(lock);
# else
pthread_mutex_destroy(lock);
# endif
OPENSSL_free(lock);
return;
}
int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
{
if (pthread_once(once, init) != 0)
return 0;
return 1;
}
int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
{
if (pthread_key_create(key, cleanup) != 0)
return 0;
return 1;
}
void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
{
return pthread_getspecific(*key);
}
int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
{
if (pthread_setspecific(*key, val) != 0)
return 0;
return 1;
}
int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
{
if (pthread_key_delete(*key) != 0)
return 0;
return 1;
}
CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
{
return pthread_self();
}
int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
{
return pthread_equal(a, b);
}
int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
{
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
if (__atomic_is_lock_free(sizeof(*val), val)) {
*ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
return 1;
}
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
/* This will work for all future Solaris versions. */
if (ret != NULL) {
*ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
return 1;
}
# endif
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
return 0;
*val += amount;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
}
int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
CRYPTO_RWLOCK *lock)
{
# if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
if (__atomic_is_lock_free(sizeof(*val), val)) {
*ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
return 1;
}
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
/* This will work for all future Solaris versions. */
if (ret != NULL) {
*ret = atomic_or_64_nv(val, op);
return 1;
}
# endif
if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
return 0;
*val |= op;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
}
int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
{
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
if (__atomic_is_lock_free(sizeof(*val), val)) {
__atomic_load(val, ret, __ATOMIC_ACQUIRE);
return 1;
}
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
/* This will work for all future Solaris versions. */
if (ret != NULL) {
*ret = atomic_or_64_nv(val, 0);
return 1;
}
# endif
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
return 0;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
}
int CRYPTO_atomic_store(uint64_t *dst, uint64_t val, CRYPTO_RWLOCK *lock)
{
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
if (__atomic_is_lock_free(sizeof(*dst), dst)) {
__atomic_store(dst, &val, __ATOMIC_RELEASE);
return 1;
}
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
/* This will work for all future Solaris versions. */
if (ret != NULL) {
atomic_swap_64(dst, val);
return 1;
}
# endif
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
return 0;
*dst = val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
}
int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
{
# if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
if (__atomic_is_lock_free(sizeof(*val), val)) {
__atomic_load(val, ret, __ATOMIC_ACQUIRE);
return 1;
}
# elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
/* This will work for all future Solaris versions. */
if (ret != NULL) {
*ret = (int *)atomic_or_uint_nv((unsigned int *)val, 0);
return 1;
}
# endif
if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
return 0;
*ret = *val;
if (!CRYPTO_THREAD_unlock(lock))
return 0;
return 1;
}
# ifndef FIPS_MODULE
int openssl_init_fork_handlers(void)
{
return 1;
}
# endif /* FIPS_MODULE */
int openssl_get_fork_id(void)
{
return getpid();
}
#endif