openssl/providers/implementations/kdfs/argon2.c

1587 lines
48 KiB
C

/*
* Copyright 2022 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*
* RFC 9106 Argon2 (see https://www.rfc-editor.org/rfc/rfc9106.txt)
*
*/
#include <stdlib.h>
#include <stddef.h>
#include <stdint.h>
#include <stdarg.h>
#include <limits.h>
#include <string.h>
#include <crypto/evp.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#include <openssl/crypto.h>
#include <openssl/kdf.h>
#include <openssl/err.h>
#include <openssl/core_names.h>
#include <openssl/params.h>
#include <openssl/thread.h>
#include "internal/thread.h"
#include "internal/numbers.h"
#include "internal/endian.h"
#include "prov/implementations.h"
#include <openssl/proverr.h>
#include "prov/provider_ctx.h"
#include "prov/providercommon.h"
#include "prov/blake2.h"
#if defined(OPENSSL_NO_DEFAULT_THREAD_POOL) && defined(OPENSSL_NO_THREAD_POOL)
# define ARGON2_NO_THREADS
#endif
#if !defined(OPENSSL_THREADS)
# define ARGON2_NO_THREADS
#endif
#ifndef OPENSSL_NO_ARGON2
# define ARGON2_MIN_LANES 1u
# define ARGON2_MAX_LANES 0xFFFFFFu
# define ARGON2_MIN_THREADS 1u
# define ARGON2_MAX_THREADS 0xFFFFFFu
# define ARGON2_SYNC_POINTS 4u
# define ARGON2_MIN_OUT_LENGTH 4u
# define ARGON2_MAX_OUT_LENGTH 0xFFFFFFFFu
# define ARGON2_MIN_MEMORY (2 * ARGON2_SYNC_POINTS)
# define ARGON2_MIN(a, b) ((a) < (b) ? (a) : (b))
# define ARGON2_MAX_MEMORY 0xFFFFFFFFu
# define ARGON2_MIN_TIME 1u
# define ARGON2_MAX_TIME 0xFFFFFFFFu
# define ARGON2_MIN_PWD_LENGTH 0u
# define ARGON2_MAX_PWD_LENGTH 0xFFFFFFFFu
# define ARGON2_MIN_AD_LENGTH 0u
# define ARGON2_MAX_AD_LENGTH 0xFFFFFFFFu
# define ARGON2_MIN_SALT_LENGTH 8u
# define ARGON2_MAX_SALT_LENGTH 0xFFFFFFFFu
# define ARGON2_MIN_SECRET 0u
# define ARGON2_MAX_SECRET 0xFFFFFFFFu
# define ARGON2_BLOCK_SIZE 1024
# define ARGON2_QWORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 8)
# define ARGON2_OWORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 16)
# define ARGON2_HWORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 32)
# define ARGON2_512BIT_WORDS_IN_BLOCK ((ARGON2_BLOCK_SIZE) / 64)
# define ARGON2_ADDRESSES_IN_BLOCK 128
# define ARGON2_PREHASH_DIGEST_LENGTH 64
# define ARGON2_PREHASH_SEED_LENGTH \
(ARGON2_PREHASH_DIGEST_LENGTH + (2 * sizeof(uint32_t)))
# define ARGON2_DEFAULT_OUTLEN 64u
# define ARGON2_DEFAULT_T_COST 3u
# define ARGON2_DEFAULT_M_COST ARGON2_MIN_MEMORY
# define ARGON2_DEFAULT_LANES 1u
# define ARGON2_DEFAULT_THREADS 1u
# define ARGON2_DEFAULT_VERSION ARGON2_VERSION_NUMBER
# undef G
# define G(a, b, c, d) \
do { \
a = a + b + 2 * mul_lower(a, b); \
d = rotr64(d ^ a, 32); \
c = c + d + 2 * mul_lower(c, d); \
b = rotr64(b ^ c, 24); \
a = a + b + 2 * mul_lower(a, b); \
d = rotr64(d ^ a, 16); \
c = c + d + 2 * mul_lower(c, d); \
b = rotr64(b ^ c, 63); \
} while ((void)0, 0)
# undef PERMUTATION_P
# define PERMUTATION_P(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, \
v12, v13, v14, v15) \
do { \
G(v0, v4, v8, v12); \
G(v1, v5, v9, v13); \
G(v2, v6, v10, v14); \
G(v3, v7, v11, v15); \
G(v0, v5, v10, v15); \
G(v1, v6, v11, v12); \
G(v2, v7, v8, v13); \
G(v3, v4, v9, v14); \
} while ((void)0, 0)
# undef PERMUTATION_P_COLUMN
# define PERMUTATION_P_COLUMN(x, i) \
do { \
uint64_t *base = &x[16 * i]; \
PERMUTATION_P( \
*base, *(base + 1), *(base + 2), *(base + 3), \
*(base + 4), *(base + 5), *(base + 6), *(base + 7), \
*(base + 8), *(base + 9), *(base + 10), *(base + 11), \
*(base + 12), *(base + 13), *(base + 14), *(base + 15) \
); \
} while ((void)0, 0)
# undef PERMUTATION_P_ROW
# define PERMUTATION_P_ROW(x, i) \
do { \
uint64_t *base = &x[2 * i]; \
PERMUTATION_P( \
*base, *(base + 1), *(base + 16), *(base + 17), \
*(base + 32), *(base + 33), *(base + 48), *(base + 49), \
*(base + 64), *(base + 65), *(base + 80), *(base + 81), \
*(base + 96), *(base + 97), *(base + 112), *(base + 113) \
); \
} while ((void)0, 0)
typedef struct {
uint64_t v[ARGON2_QWORDS_IN_BLOCK];
} BLOCK;
typedef enum {
ARGON2_VERSION_10 = 0x10,
ARGON2_VERSION_13 = 0x13,
ARGON2_VERSION_NUMBER = ARGON2_VERSION_13
} ARGON2_VERSION;
typedef enum {
ARGON2_D = 0,
ARGON2_I = 1,
ARGON2_ID = 2
} ARGON2_TYPE;
typedef struct {
uint32_t pass;
uint32_t lane;
uint8_t slice;
uint32_t index;
} ARGON2_POS;
typedef struct {
void *provctx;
uint8_t *out;
uint32_t outlen;
uint8_t *pwd;
uint32_t pwdlen;
uint8_t *salt;
uint32_t saltlen;
uint8_t *secret;
uint32_t secretlen;
uint8_t *ad;
uint32_t adlen;
uint32_t t_cost;
uint32_t m_cost;
uint32_t lanes;
uint32_t threads;
uint32_t version;
uint32_t early_clean;
ARGON2_TYPE type;
BLOCK *memory;
uint32_t passes;
uint32_t memory_blocks;
uint32_t segment_length;
uint32_t lane_length;
OSSL_LIB_CTX *libctx;
EVP_MD *md;
EVP_MAC *mac;
char *propq;
} KDF_ARGON2;
typedef struct {
ARGON2_POS pos;
KDF_ARGON2 *ctx;
} ARGON2_THREAD_DATA;
static OSSL_FUNC_kdf_newctx_fn kdf_argon2i_new;
static OSSL_FUNC_kdf_newctx_fn kdf_argon2d_new;
static OSSL_FUNC_kdf_newctx_fn kdf_argon2id_new;
static OSSL_FUNC_kdf_freectx_fn kdf_argon2_free;
static OSSL_FUNC_kdf_reset_fn kdf_argon2_reset;
static OSSL_FUNC_kdf_derive_fn kdf_argon2_derive;
static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_argon2_settable_ctx_params;
static OSSL_FUNC_kdf_set_ctx_params_fn kdf_argon2_set_ctx_params;
static void kdf_argon2_init(KDF_ARGON2 *ctx, ARGON2_TYPE t);
static void *kdf_argon2d_new(void *provctx);
static void *kdf_argon2i_new(void *provctx);
static void *kdf_argon2id_new(void *provctx);
static void kdf_argon2_free(void *vctx);
static int kdf_argon2_derive(void *vctx, unsigned char *out, size_t outlen,
const OSSL_PARAM params[]);
static void kdf_argon2_reset(void *vctx);
static int kdf_argon2_ctx_set_threads(KDF_ARGON2 *ctx, uint32_t threads);
static int kdf_argon2_ctx_set_lanes(KDF_ARGON2 *ctx, uint32_t lanes);
static int kdf_argon2_ctx_set_t_cost(KDF_ARGON2 *ctx, uint32_t t_cost);
static int kdf_argon2_ctx_set_m_cost(KDF_ARGON2 *ctx, uint32_t m_cost);
static int kdf_argon2_ctx_set_out_length(KDF_ARGON2 *ctx, uint32_t outlen);
static int kdf_argon2_ctx_set_secret(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
static int kdf_argon2_ctx_set_pwd(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
static int kdf_argon2_ctx_set_salt(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
static int kdf_argon2_ctx_set_ad(KDF_ARGON2 *ctx, const OSSL_PARAM *p);
static int kdf_argon2_set_ctx_params(void *vctx, const OSSL_PARAM params[]);
static int kdf_argon2_get_ctx_params(void *vctx, OSSL_PARAM params[]);
static int kdf_argon2_ctx_set_version(KDF_ARGON2 *ctx, uint32_t version);
static const OSSL_PARAM *kdf_argon2_settable_ctx_params(ossl_unused void *ctx,
ossl_unused void *p_ctx);
static const OSSL_PARAM *kdf_argon2_gettable_ctx_params(ossl_unused void *ctx,
ossl_unused void *p_ctx);
static ossl_inline uint64_t load64(const uint8_t *src);
static ossl_inline void store32(uint8_t *dst, uint32_t w);
static ossl_inline void store64(uint8_t *dst, uint64_t w);
static ossl_inline uint64_t rotr64(const uint64_t w, const unsigned int c);
static ossl_inline uint64_t mul_lower(uint64_t x, uint64_t y);
static void init_block_value(BLOCK *b, uint8_t in);
static void copy_block(BLOCK *dst, const BLOCK *src);
static void xor_block(BLOCK *dst, const BLOCK *src);
static void load_block(BLOCK *dst, const void *input);
static void store_block(void *output, const BLOCK *src);
static void fill_first_blocks(uint8_t *blockhash, const KDF_ARGON2 *ctx);
static void fill_block(const BLOCK *prev, const BLOCK *ref, BLOCK *next,
int with_xor);
static void next_addresses(BLOCK *address_block, BLOCK *input_block,
const BLOCK *zero_block);
static int data_indep_addressing(const KDF_ARGON2 *ctx, uint32_t pass,
uint8_t slice);
static uint32_t index_alpha(const KDF_ARGON2 *ctx, uint32_t pass,
uint8_t slice, uint32_t index,
uint32_t pseudo_rand, int same_lane);
static void fill_segment(const KDF_ARGON2 *ctx, uint32_t pass, uint32_t lane,
uint8_t slice);
# if !defined(ARGON2_NO_THREADS)
static uint32_t fill_segment_thr(void *thread_data);
static int fill_mem_blocks_mt(KDF_ARGON2 *ctx);
# endif
static int fill_mem_blocks_st(KDF_ARGON2 *ctx);
static ossl_inline int fill_memory_blocks(KDF_ARGON2 *ctx);
static void initial_hash(uint8_t *blockhash, KDF_ARGON2 *ctx);
static int initialize(KDF_ARGON2 *ctx);
static void finalize(const KDF_ARGON2 *ctx);
static int blake2b(EVP_MD *md, EVP_MAC *mac, void *out, size_t outlen,
const void *in, size_t inlen, const void *key,
size_t keylen);
static int blake2b_long(EVP_MD *md, EVP_MAC *mac, unsigned char *out,
size_t outlen, const void *in, size_t inlen);
static ossl_inline uint64_t load64(const uint8_t *src)
{
return
(((uint64_t)src[0]) << 0)
| (((uint64_t)src[1]) << 8)
| (((uint64_t)src[2]) << 16)
| (((uint64_t)src[3]) << 24)
| (((uint64_t)src[4]) << 32)
| (((uint64_t)src[5]) << 40)
| (((uint64_t)src[6]) << 48)
| (((uint64_t)src[7]) << 56);
}
static ossl_inline void store32(uint8_t *dst, uint32_t w)
{
dst[0] = (uint8_t)(w >> 0);
dst[1] = (uint8_t)(w >> 8);
dst[2] = (uint8_t)(w >> 16);
dst[3] = (uint8_t)(w >> 24);
}
static ossl_inline void store64(uint8_t *dst, uint64_t w)
{
dst[0] = (uint8_t)(w >> 0);
dst[1] = (uint8_t)(w >> 8);
dst[2] = (uint8_t)(w >> 16);
dst[3] = (uint8_t)(w >> 24);
dst[4] = (uint8_t)(w >> 32);
dst[5] = (uint8_t)(w >> 40);
dst[6] = (uint8_t)(w >> 48);
dst[7] = (uint8_t)(w >> 56);
}
static ossl_inline uint64_t rotr64(const uint64_t w, const unsigned int c)
{
return (w >> c) | (w << (64 - c));
}
static ossl_inline uint64_t mul_lower(uint64_t x, uint64_t y)
{
const uint64_t m = UINT64_C(0xFFFFFFFF);
return (x & m) * (y & m);
}
static void init_block_value(BLOCK *b, uint8_t in)
{
memset(b->v, in, sizeof(b->v));
}
static void copy_block(BLOCK *dst, const BLOCK *src)
{
memcpy(dst->v, src->v, sizeof(uint64_t) * ARGON2_QWORDS_IN_BLOCK);
}
static void xor_block(BLOCK *dst, const BLOCK *src)
{
int i;
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i)
dst->v[i] ^= src->v[i];
}
static void load_block(BLOCK *dst, const void *input)
{
unsigned i;
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i)
dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i]));
}
static void store_block(void *output, const BLOCK *src)
{
unsigned i;
for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i)
store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]);
}
static void fill_first_blocks(uint8_t *blockhash, const KDF_ARGON2 *ctx)
{
uint32_t l;
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
/*
* Make the first and second block in each lane as G(H0||0||i)
* or G(H0||1||i).
*/
for (l = 0; l < ctx->lanes; ++l) {
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, l);
blake2b_long(ctx->md, ctx->mac, blockhash_bytes, ARGON2_BLOCK_SIZE,
blockhash, ARGON2_PREHASH_SEED_LENGTH);
load_block(&ctx->memory[l * ctx->lane_length + 0],
blockhash_bytes);
store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
blake2b_long(ctx->md, ctx->mac, blockhash_bytes, ARGON2_BLOCK_SIZE,
blockhash, ARGON2_PREHASH_SEED_LENGTH);
load_block(&ctx->memory[l * ctx->lane_length + 1],
blockhash_bytes);
}
OPENSSL_cleanse(blockhash_bytes, ARGON2_BLOCK_SIZE);
}
static void fill_block(const BLOCK *prev, const BLOCK *ref,
BLOCK *next, int with_xor)
{
BLOCK blockR, tmp;
unsigned i;
copy_block(&blockR, ref);
xor_block(&blockR, prev);
copy_block(&tmp, &blockR);
if (with_xor)
xor_block(&tmp, next);
for (i = 0; i < 8; ++i)
PERMUTATION_P_COLUMN(blockR.v, i);
for (i = 0; i < 8; ++i)
PERMUTATION_P_ROW(blockR.v, i);
copy_block(next, &tmp);
xor_block(next, &blockR);
}
static void next_addresses(BLOCK *address_block, BLOCK *input_block,
const BLOCK *zero_block)
{
input_block->v[6]++;
fill_block(zero_block, input_block, address_block, 0);
fill_block(zero_block, address_block, address_block, 0);
}
static int data_indep_addressing(const KDF_ARGON2 *ctx, uint32_t pass,
uint8_t slice)
{
switch (ctx->type) {
case ARGON2_I:
return 1;
case ARGON2_ID:
return (pass == 0) && (slice < ARGON2_SYNC_POINTS / 2);
case ARGON2_D:
default:
return 0;
}
}
/*
* Pass 0 (pass = 0):
* This lane: all already finished segments plus already constructed blocks
* in this segment
* Other lanes: all already finished segments
*
* Pass 1+:
* This lane: (SYNC_POINTS - 1) last segments plus already constructed
* blocks in this segment
* Other lanes: (SYNC_POINTS - 1) last segments
*/
static uint32_t index_alpha(const KDF_ARGON2 *ctx, uint32_t pass,
uint8_t slice, uint32_t index,
uint32_t pseudo_rand, int same_lane)
{
uint32_t ref_area_sz;
uint64_t rel_pos;
uint32_t start_pos, abs_pos;
start_pos = 0;
switch (pass) {
case 0:
if (slice == 0)
ref_area_sz = index - 1;
else if (same_lane)
ref_area_sz = slice * ctx->segment_length + index - 1;
else
ref_area_sz = slice * ctx->segment_length +
((index == 0) ? (-1) : 0);
break;
default:
if (same_lane)
ref_area_sz = ctx->lane_length - ctx->segment_length + index - 1;
else
ref_area_sz = ctx->lane_length - ctx->segment_length +
((index == 0) ? (-1) : 0);
if (slice != ARGON2_SYNC_POINTS - 1)
start_pos = (slice + 1) * ctx->segment_length;
break;
}
rel_pos = pseudo_rand;
rel_pos = rel_pos * rel_pos >> 32;
rel_pos = ref_area_sz - 1 - (ref_area_sz * rel_pos >> 32);
abs_pos = (start_pos + rel_pos) % ctx->lane_length;
return abs_pos;
}
static void fill_segment(const KDF_ARGON2 *ctx, uint32_t pass, uint32_t lane,
uint8_t slice)
{
BLOCK *ref_block = NULL, *curr_block = NULL;
BLOCK address_block, input_block, zero_block;
uint64_t rnd, ref_index, ref_lane;
uint32_t prev_offset;
uint32_t start_idx;
uint32_t j;
uint32_t curr_offset; /* Offset of the current block */
memset(&input_block, 0, sizeof(BLOCK));
if (ctx == NULL)
return;
if (data_indep_addressing(ctx, pass, slice)) {
init_block_value(&zero_block, 0);
init_block_value(&input_block, 0);
input_block.v[0] = pass;
input_block.v[1] = lane;
input_block.v[2] = slice;
input_block.v[3] = ctx->memory_blocks;
input_block.v[4] = ctx->passes;
input_block.v[5] = ctx->type;
}
start_idx = 0;
/* We've generated the first two blocks. Generate the 1st block of addrs. */
if ((pass == 0) && (slice == 0)) {
start_idx = 2;
if (data_indep_addressing(ctx, pass, slice))
next_addresses(&address_block, &input_block, &zero_block);
}
curr_offset = lane * ctx->lane_length + slice * ctx->segment_length
+ start_idx;
if ((curr_offset % ctx->lane_length) == 0)
prev_offset = curr_offset + ctx->lane_length - 1;
else
prev_offset = curr_offset - 1;
for (j = start_idx; j < ctx->segment_length; ++j, ++curr_offset, ++prev_offset) {
if (curr_offset % ctx->lane_length == 1)
prev_offset = curr_offset - 1;
/* Taking pseudo-random value from the previous block. */
if (data_indep_addressing(ctx, pass, slice)) {
if (j % ARGON2_ADDRESSES_IN_BLOCK == 0)
next_addresses(&address_block, &input_block, &zero_block);
rnd = address_block.v[j % ARGON2_ADDRESSES_IN_BLOCK];
} else {
rnd = ctx->memory[prev_offset].v[0];
}
/* Computing the lane of the reference block */
ref_lane = ((rnd >> 32)) % ctx->lanes;
/* Can not reference other lanes yet */
if ((pass == 0) && (slice == 0))
ref_lane = lane;
/* Computing the number of possible reference block within the lane. */
ref_index = index_alpha(ctx, pass, slice, j, rnd & 0xFFFFFFFF,
ref_lane == lane);
/* Creating a new block */
ref_block = ctx->memory + ctx->lane_length * ref_lane + ref_index;
curr_block = ctx->memory + curr_offset;
if (ARGON2_VERSION_10 == ctx->version) {
/* Version 1.2.1 and earlier: overwrite, not XOR */
fill_block(ctx->memory + prev_offset, ref_block, curr_block, 0);
continue;
}
fill_block(ctx->memory + prev_offset, ref_block, curr_block,
pass == 0 ? 0 : 1);
}
}
# if !defined(ARGON2_NO_THREADS)
static uint32_t fill_segment_thr(void *thread_data)
{
ARGON2_THREAD_DATA *my_data;
my_data = (ARGON2_THREAD_DATA *) thread_data;
fill_segment(my_data->ctx, my_data->pos.pass, my_data->pos.lane,
my_data->pos.slice);
return 0;
}
static int fill_mem_blocks_mt(KDF_ARGON2 *ctx)
{
uint32_t r, s, l, ll;
void **t;
ARGON2_THREAD_DATA *t_data;
t = OPENSSL_zalloc(sizeof(void *)*ctx->lanes);
t_data = OPENSSL_zalloc(ctx->lanes * sizeof(ARGON2_THREAD_DATA));
if (t == NULL || t_data == NULL)
goto fail;
for (r = 0; r < ctx->passes; ++r) {
for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
for (l = 0; l < ctx->lanes; ++l) {
ARGON2_POS p;
if (l >= ctx->threads) {
if (ossl_crypto_thread_join(t[l - ctx->threads], NULL) == 0)
goto fail;
if (ossl_crypto_thread_clean(t[l - ctx->threads]) == 0)
goto fail;
t[l] = NULL;
}
p.pass = r;
p.lane = l;
p.slice = (uint8_t)s;
p.index = 0;
t_data[l].ctx = ctx;
memcpy(&(t_data[l].pos), &p, sizeof(ARGON2_POS));
t[l] = ossl_crypto_thread_start(ctx->libctx, &fill_segment_thr,
(void *) &t_data[l]);
if (t[l] == NULL) {
for (ll = 0; ll < l; ++ll) {
if (ossl_crypto_thread_join(t[ll], NULL) == 0)
goto fail;
if (ossl_crypto_thread_clean(t[ll]) == 0)
goto fail;
t[ll] = NULL;
}
goto fail;
}
}
for (l = ctx->lanes - ctx->threads; l < ctx->lanes; ++l) {
if (ossl_crypto_thread_join(t[l], NULL) == 0)
goto fail;
if (ossl_crypto_thread_clean(t[l]) == 0)
goto fail;
t[l] = NULL;
}
}
}
OPENSSL_free(t_data);
OPENSSL_free(t);
return 1;
fail:
if (t_data != NULL)
OPENSSL_free(t_data);
if (t != NULL)
OPENSSL_free(t);
return 0;
}
# endif /* !defined(ARGON2_NO_THREADS) */
static int fill_mem_blocks_st(KDF_ARGON2 *ctx)
{
uint32_t r, s, l;
for (r = 0; r < ctx->passes; ++r)
for (s = 0; s < ARGON2_SYNC_POINTS; ++s)
for (l = 0; l < ctx->lanes; ++l)
fill_segment(ctx, r, l, s);
return 1;
}
static ossl_inline int fill_memory_blocks(KDF_ARGON2 *ctx)
{
# if !defined(ARGON2_NO_THREADS)
return ctx->threads == 1 ? fill_mem_blocks_st(ctx) : fill_mem_blocks_mt(ctx);
# else
return ctx->threads == 1 ? fill_mem_blocks_st(ctx) : 0;
# endif
}
static void initial_hash(uint8_t *blockhash, KDF_ARGON2 *ctx)
{
EVP_MD_CTX *mdctx;
uint8_t value[sizeof(uint32_t)];
unsigned int tmp;
uint32_t args[7];
if (ctx == NULL || blockhash == NULL)
return;
args[0] = ctx->lanes;
args[1] = ctx->outlen;
args[2] = ctx->m_cost;
args[3] = ctx->t_cost;
args[4] = ctx->version;
args[5] = (uint32_t) ctx->type;
args[6] = ctx->pwdlen;
mdctx = EVP_MD_CTX_create();
if (mdctx == NULL || EVP_DigestInit_ex(mdctx, ctx->md, NULL) != 1)
goto fail;
for (tmp = 0; tmp < sizeof(args) / sizeof(uint32_t); ++tmp) {
store32((uint8_t *) &value, args[tmp]);
if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
goto fail;
}
if (ctx->pwd != NULL) {
if (EVP_DigestUpdate(mdctx, ctx->pwd, ctx->pwdlen) != 1)
goto fail;
if (ctx->early_clean) {
OPENSSL_cleanse(ctx->pwd, ctx->pwdlen);
ctx->pwdlen = 0;
}
}
store32((uint8_t *) &value, ctx->saltlen);
if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
goto fail;
if (ctx->salt != NULL)
if (EVP_DigestUpdate(mdctx, ctx->salt, ctx->saltlen) != 1)
goto fail;
store32((uint8_t *) &value, ctx->secretlen);
if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
goto fail;
if (ctx->secret != NULL) {
if (EVP_DigestUpdate(mdctx, ctx->secret, ctx->secretlen) != 1)
goto fail;
if (ctx->early_clean) {
OPENSSL_cleanse(ctx->secret, ctx->secretlen);
ctx->secretlen = 0;
}
}
store32((uint8_t *) &value, ctx->adlen);
if (EVP_DigestUpdate(mdctx, &value, sizeof(value)) != 1)
goto fail;
if (ctx->ad != NULL)
if (EVP_DigestUpdate(mdctx, ctx->ad, ctx->adlen) != 1)
goto fail;
tmp = ARGON2_PREHASH_DIGEST_LENGTH;
if (EVP_DigestFinal_ex(mdctx, blockhash, &tmp) != 1)
goto fail;
fail:
EVP_MD_CTX_destroy(mdctx);
}
static int initialize(KDF_ARGON2 *ctx)
{
uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH];
if (ctx == NULL)
return 0;
if (ctx->memory_blocks * sizeof(BLOCK) / sizeof(BLOCK) != ctx->memory_blocks)
return 0;
if (ctx->type != ARGON2_D)
ctx->memory = OPENSSL_secure_zalloc(ctx->memory_blocks *
sizeof(BLOCK));
else
ctx->memory = OPENSSL_zalloc(ctx->memory_blocks *
sizeof(BLOCK));
if (ctx->memory == NULL) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MEMORY_SIZE,
"cannot allocate required memory");
return 0;
}
initial_hash(blockhash, ctx);
OPENSSL_cleanse(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
ARGON2_PREHASH_SEED_LENGTH - ARGON2_PREHASH_DIGEST_LENGTH);
fill_first_blocks(blockhash, ctx);
OPENSSL_cleanse(blockhash, ARGON2_PREHASH_SEED_LENGTH);
return 1;
}
static void finalize(const KDF_ARGON2 *ctx)
{
BLOCK blockhash;
uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
uint32_t last_block_in_lane;
uint32_t l;
if (ctx == NULL)
return;
copy_block(&blockhash, ctx->memory + ctx->lane_length - 1);
/* XOR the last blocks */
for (l = 1; l < ctx->lanes; ++l) {
last_block_in_lane = l * ctx->lane_length + (ctx->lane_length - 1);
xor_block(&blockhash, ctx->memory + last_block_in_lane);
}
/* Hash the result */
store_block(blockhash_bytes, &blockhash);
blake2b_long(ctx->md, ctx->mac, ctx->out, ctx->outlen, blockhash_bytes,
ARGON2_BLOCK_SIZE);
OPENSSL_cleanse(blockhash.v, ARGON2_BLOCK_SIZE);
OPENSSL_cleanse(blockhash_bytes, ARGON2_BLOCK_SIZE);
if (ctx->type != ARGON2_D)
OPENSSL_secure_clear_free(ctx->memory,
ctx->memory_blocks * sizeof(BLOCK));
else
OPENSSL_clear_free(ctx->memory,
ctx->memory_blocks * sizeof(BLOCK));
}
static int blake2b_mac(EVP_MAC *mac, void *out, size_t outlen, const void *in,
size_t inlen, const void *key, size_t keylen)
{
int ret = 0;
size_t par_n = 0, out_written;
EVP_MAC_CTX *ctx = NULL;
OSSL_PARAM par[3];
if ((ctx = EVP_MAC_CTX_new(mac)) == NULL)
goto fail;
par[par_n++] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY,
(void *) key, keylen);
par[par_n++] = OSSL_PARAM_construct_size_t(OSSL_MAC_PARAM_SIZE, &outlen);
par[par_n++] = OSSL_PARAM_construct_end();
ret = EVP_MAC_CTX_set_params(ctx, par) == 1
&& EVP_MAC_init(ctx, NULL, 0, NULL) == 1
&& EVP_MAC_update(ctx, in, inlen) == 1
&& EVP_MAC_final(ctx, out, (size_t *) &out_written, outlen) == 1;
fail:
EVP_MAC_CTX_free(ctx);
return ret;
}
static int blake2b_md(EVP_MD *md, void *out, size_t outlen, const void *in,
size_t inlen)
{
int ret = 0;
EVP_MD_CTX *ctx = NULL;
OSSL_PARAM par[2];
if ((ctx = EVP_MD_CTX_create()) == NULL)
return 0;
par[0] = OSSL_PARAM_construct_size_t(OSSL_DIGEST_PARAM_XOFLEN, &outlen);
par[1] = OSSL_PARAM_construct_end();
ret = EVP_DigestInit_ex2(ctx, md, par) == 1
&& EVP_DigestUpdate(ctx, in, inlen) == 1
&& EVP_DigestFinalXOF(ctx, out, outlen) == 1;
EVP_MD_CTX_free(ctx);
return ret;
}
static int blake2b(EVP_MD *md, EVP_MAC *mac, void *out, size_t outlen,
const void *in, size_t inlen, const void *key, size_t keylen)
{
if (out == NULL || outlen == 0)
return 0;
if (key == NULL || keylen == 0)
return blake2b_md(md, out, outlen, in, inlen);
return blake2b_mac(mac, out, outlen, in, inlen, key, keylen);
}
static int blake2b_long(EVP_MD *md, EVP_MAC *mac, unsigned char *out,
size_t outlen, const void *in, size_t inlen)
{
int ret = 0;
EVP_MD_CTX *ctx = NULL;
uint32_t outlen_curr;
uint8_t outbuf[BLAKE2B_OUTBYTES];
uint8_t inbuf[BLAKE2B_OUTBYTES];
uint8_t outlen_bytes[sizeof(uint32_t)] = {0};
OSSL_PARAM par[2];
size_t outlen_md;
if (out == NULL || outlen == 0)
return 0;
/* Ensure little-endian byte order */
store32(outlen_bytes, (uint32_t)outlen);
if ((ctx = EVP_MD_CTX_create()) == NULL)
return 0;
outlen_md = (outlen <= BLAKE2B_OUTBYTES) ? outlen : BLAKE2B_OUTBYTES;
par[0] = OSSL_PARAM_construct_size_t(OSSL_DIGEST_PARAM_XOFLEN, &outlen_md);
par[1] = OSSL_PARAM_construct_end();
ret = EVP_DigestInit_ex2(ctx, md, par) == 1
&& EVP_DigestUpdate(ctx, outlen_bytes, sizeof(outlen_bytes)) == 1
&& EVP_DigestUpdate(ctx, in, inlen) == 1
&& EVP_DigestFinalXOF(ctx, (outlen > BLAKE2B_OUTBYTES) ? outbuf : out,
outlen_md) == 1;
if (ret == 0)
goto fail;
if (outlen > BLAKE2B_OUTBYTES) {
memcpy(out, outbuf, BLAKE2B_OUTBYTES / 2);
out += BLAKE2B_OUTBYTES / 2;
outlen_curr = (uint32_t) outlen - BLAKE2B_OUTBYTES / 2;
while (outlen_curr > BLAKE2B_OUTBYTES) {
memcpy(inbuf, outbuf, BLAKE2B_OUTBYTES);
if (blake2b(md, mac, outbuf, BLAKE2B_OUTBYTES, inbuf,
BLAKE2B_OUTBYTES, NULL, 0) != 1)
goto fail;
memcpy(out, outbuf, BLAKE2B_OUTBYTES / 2);
out += BLAKE2B_OUTBYTES / 2;
outlen_curr -= BLAKE2B_OUTBYTES / 2;
}
memcpy(inbuf, outbuf, BLAKE2B_OUTBYTES);
if (blake2b(md, mac, outbuf, outlen_curr, inbuf, BLAKE2B_OUTBYTES,
NULL, 0) != 1)
goto fail;
memcpy(out, outbuf, outlen_curr);
}
ret = 1;
fail:
EVP_MD_CTX_free(ctx);
return ret;
}
static void kdf_argon2_init(KDF_ARGON2 *c, ARGON2_TYPE type)
{
OSSL_LIB_CTX *libctx;
libctx = c->libctx;
memset(c, 0, sizeof(*c));
c->libctx = libctx;
c->outlen = ARGON2_DEFAULT_OUTLEN;
c->t_cost = ARGON2_DEFAULT_T_COST;
c->m_cost = ARGON2_DEFAULT_M_COST;
c->lanes = ARGON2_DEFAULT_LANES;
c->threads = ARGON2_DEFAULT_THREADS;
c->version = ARGON2_DEFAULT_VERSION;
c->type = type;
}
static void *kdf_argon2d_new(void *provctx)
{
KDF_ARGON2 *ctx;
if (!ossl_prov_is_running())
return NULL;
ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return NULL;
}
ctx->libctx = PROV_LIBCTX_OF(provctx);
kdf_argon2_init(ctx, ARGON2_D);
return ctx;
}
static void *kdf_argon2i_new(void *provctx)
{
KDF_ARGON2 *ctx;
if (!ossl_prov_is_running())
return NULL;
ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return NULL;
}
ctx->libctx = PROV_LIBCTX_OF(provctx);
kdf_argon2_init(ctx, ARGON2_I);
return ctx;
}
static void *kdf_argon2id_new(void *provctx)
{
KDF_ARGON2 *ctx;
if (!ossl_prov_is_running())
return NULL;
ctx = OPENSSL_zalloc(sizeof(*ctx));
if (ctx == NULL) {
ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE);
return NULL;
}
ctx->libctx = PROV_LIBCTX_OF(provctx);
kdf_argon2_init(ctx, ARGON2_ID);
return ctx;
}
static void kdf_argon2_free(void *vctx)
{
KDF_ARGON2 *ctx = (KDF_ARGON2 *)vctx;
if (ctx == NULL)
return;
if (ctx->out != NULL)
OPENSSL_clear_free(ctx->out, ctx->outlen);
if (ctx->pwd != NULL)
OPENSSL_clear_free(ctx->pwd, ctx->pwdlen);
if (ctx->salt != NULL)
OPENSSL_clear_free(ctx->salt, ctx->saltlen);
if (ctx->secret != NULL)
OPENSSL_clear_free(ctx->secret, ctx->secretlen);
if (ctx->ad != NULL)
OPENSSL_clear_free(ctx->ad, ctx->adlen);
OPENSSL_free(ctx->propq);
memset(ctx, 0, sizeof(*ctx));
OPENSSL_free(ctx);
}
static int kdf_argon2_derive(void *vctx, unsigned char *out, size_t outlen,
const OSSL_PARAM params[])
{
KDF_ARGON2 *ctx;
uint32_t memory_blocks, segment_length;
ctx = (KDF_ARGON2 *)vctx;
if (!ossl_prov_is_running() || !kdf_argon2_set_ctx_params(vctx, params))
return 0;
ctx->mac = EVP_MAC_fetch(ctx->libctx, "blake2bmac", ctx->propq);
if (ctx->mac == NULL) {
OPENSSL_free(ctx);
ERR_raise_data(ERR_LIB_PROV, PROV_R_MISSING_MAC,
"cannot fetch blake2bmac");
return 0;
}
ctx->md = EVP_MD_fetch(ctx->libctx, "blake2b512", ctx->propq);
if (ctx->md == NULL) {
OPENSSL_free(ctx);
ERR_raise_data(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST,
"canot fetch blake2b512");
goto fail1;
}
if (ctx->salt == NULL || ctx->saltlen == 0) {
ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT);
goto fail2;
}
if (outlen != ctx->outlen) {
if (OSSL_PARAM_locate((OSSL_PARAM *)params, "size") != NULL) {
ERR_raise(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL);
goto fail2;
}
kdf_argon2_ctx_set_out_length(ctx, (uint32_t) outlen);
}
switch (ctx->type) {
case ARGON2_D:
case ARGON2_I:
case ARGON2_ID:
break;
default:
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MODE, "invalid Argon2 type");
goto fail2;
}
if (ctx->threads > 1) {
# ifdef ARGON2_NO_THREADS
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
"requested %u threads, single-threaded mode supported only",
ctx->threads);
goto fail2;
# else
if (ctx->threads > ossl_get_avail_threads(ctx->libctx)) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
"requested %u threads, available: 1",
ossl_get_avail_threads(ctx->libctx));
goto fail2;
}
# endif
if (ctx->threads > ctx->lanes) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
"requested more threads (%u) than lanes (%u)",
ctx->threads, ctx->lanes);
goto fail2;
}
}
if (ctx->m_cost < 8 * ctx->lanes) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MEMORY_SIZE,
"m_cost must be greater or equal than 8 times the number of lanes");
goto fail2;
}
if (ctx->type != ARGON2_D)
ctx->out = OPENSSL_secure_zalloc(ctx->outlen + 1);
else
ctx->out = OPENSSL_zalloc(ctx->outlen + 1);
if (ctx->out == NULL)
goto fail2;
memory_blocks = ctx->m_cost;
if (memory_blocks < 2 * ARGON2_SYNC_POINTS * ctx->lanes)
memory_blocks = 2 * ARGON2_SYNC_POINTS * ctx->lanes;
/* Ensure that all segments have equal length */
segment_length = memory_blocks / (ctx->lanes * ARGON2_SYNC_POINTS);
memory_blocks = segment_length * (ctx->lanes * ARGON2_SYNC_POINTS);
ctx->memory = NULL;
ctx->memory_blocks = memory_blocks;
ctx->segment_length = segment_length;
ctx->passes = ctx->t_cost;
ctx->lane_length = segment_length * ARGON2_SYNC_POINTS;
if (initialize(ctx) != 1)
goto fail3;
if (fill_memory_blocks(ctx) != 1)
goto fail3;
finalize(ctx);
memcpy(out, ctx->out, outlen);
EVP_MAC_free(ctx->mac);
EVP_MD_free(ctx->md);
return 1;
fail3:
if (ctx->type != ARGON2_D)
OPENSSL_secure_clear_free(ctx->out, ctx->outlen + 1);
else
OPENSSL_clear_free(ctx->out, ctx->outlen + 1);
ctx->out = NULL;
fail2:
EVP_MD_free(ctx->md);
fail1:
EVP_MAC_free(ctx->mac);
return 0;
}
static void kdf_argon2_reset(void *vctx)
{
OSSL_LIB_CTX *libctx;
KDF_ARGON2 *ctx;
ARGON2_TYPE type;
ctx = (KDF_ARGON2 *) vctx;
type = ctx->type;
libctx = ctx->libctx;
if (ctx->out != NULL)
OPENSSL_clear_free(ctx->out, ctx->outlen);
if (ctx->pwd != NULL)
OPENSSL_clear_free(ctx->pwd, ctx->pwdlen);
if (ctx->salt != NULL)
OPENSSL_clear_free(ctx->salt, ctx->saltlen);
if (ctx->secret != NULL)
OPENSSL_clear_free(ctx->secret, ctx->secretlen);
if (ctx->ad != NULL)
OPENSSL_clear_free(ctx->ad, ctx->adlen);
memset(ctx, 0, sizeof(*ctx));
ctx->libctx = libctx;
kdf_argon2_init(ctx, type);
}
static int kdf_argon2_ctx_set_threads(KDF_ARGON2 *ctx, uint32_t threads)
{
if (threads < ARGON2_MIN_THREADS) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
"min threads: %u", ARGON2_MIN_THREADS);
return 0;
}
if (threads > ARGON2_MAX_THREADS) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_THREAD_POOL_SIZE,
"max threads: %u", ARGON2_MAX_THREADS);
return 0;
}
ctx->threads = threads;
return 1;
}
static int kdf_argon2_ctx_set_lanes(KDF_ARGON2 *ctx, uint32_t lanes)
{
if (lanes > ARGON2_MAX_LANES) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER,
"max lanes: %u", ARGON2_MAX_LANES);
return 0;
}
if (lanes < ARGON2_MIN_LANES) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_FAILED_TO_SET_PARAMETER,
"min lanes: %u", ARGON2_MIN_LANES);
return 0;
}
ctx->lanes = lanes;
return 1;
}
static int kdf_argon2_ctx_set_t_cost(KDF_ARGON2 *ctx, uint32_t t_cost)
{
/* ARGON2_MAX_MEMORY == max m_cost value, skip check, enforce type */
ossl_static_assert_type_eq(uint32_t, t_cost);
if (t_cost < ARGON2_MIN_TIME) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_ITERATION_COUNT,
"min: %u", ARGON2_MIN_TIME);
return 0;
}
ctx->t_cost = t_cost;
return 1;
}
static int kdf_argon2_ctx_set_m_cost(KDF_ARGON2 *ctx, uint32_t m_cost)
{
/* ARGON2_MAX_MEMORY == max m_cost value, skip check, enforce type */
ossl_static_assert_type_eq(uint32_t, m_cost);
if (m_cost < ARGON2_MIN_MEMORY) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MEMORY_SIZE, "min: %u",
ARGON2_MIN_MEMORY);
return 0;
}
ctx->m_cost = m_cost;
return 1;
}
static int kdf_argon2_ctx_set_out_length(KDF_ARGON2 *ctx, uint32_t outlen)
{
/*
* ARGON2_MAX_OUT_LENGTH == max outlen value, so upper bounds checks
* are always satisfied; to suppress compiler if statement tautology
* warnings, these checks are skipped; however, to ensure that these
* limits are met and implementation conforming to Argon2 RFC, we need
* to fix the type
*/
ossl_static_assert_type_eq(uint32_t, outlen);
if (outlen < ARGON2_MIN_OUT_LENGTH) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_OUTPUT_LENGTH, "min: %u",
ARGON2_MIN_OUT_LENGTH);
return 0;
}
ctx->outlen = outlen;
return 1;
}
static int kdf_argon2_ctx_set_secret(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
{
size_t buflen;
if (p->data == NULL)
return 0;
if (ctx->secret != NULL) {
OPENSSL_clear_free(ctx->secret, ctx->secretlen);
ctx->secret = NULL;
ctx->secretlen = 0U;
}
if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->secret, 0, &buflen))
return 0;
if (buflen > ARGON2_MAX_SECRET) {
OPENSSL_free(ctx->secret);
ctx->secret = NULL;
ctx->secretlen = 0U;
return 0;
}
ctx->secretlen = (uint32_t) buflen;
return 1;
}
static int kdf_argon2_ctx_set_pwd(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
{
size_t buflen;
if (p->data == NULL)
return 0;
if (ctx->pwd != NULL) {
OPENSSL_clear_free(ctx->pwd, ctx->pwdlen);
ctx->pwd = NULL;
ctx->pwdlen = 0U;
}
if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->pwd, 0, &buflen))
return 0;
if (buflen > ARGON2_MAX_PWD_LENGTH) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "max: %u",
ARGON2_MAX_PWD_LENGTH);
goto fail;
}
ctx->pwdlen = (uint32_t) buflen;
return 1;
fail:
OPENSSL_free(ctx->pwd);
ctx->pwd = NULL;
ctx->pwdlen = 0U;
return 0;
}
static int kdf_argon2_ctx_set_salt(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
{
size_t buflen;
if (p->data == NULL)
return 0;
if (ctx->salt != NULL) {
OPENSSL_clear_free(ctx->salt, ctx->saltlen);
ctx->salt = NULL;
ctx->saltlen = 0U;
}
if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->salt, 0, &buflen))
return 0;
if (buflen < ARGON2_MIN_SALT_LENGTH) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "min: %u",
ARGON2_MIN_SALT_LENGTH);
goto fail;
}
if (buflen > ARGON2_MAX_SALT_LENGTH) {
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH, "max: %u",
ARGON2_MAX_SALT_LENGTH);
goto fail;
}
ctx->saltlen = (uint32_t) buflen;
return 1;
fail:
OPENSSL_free(ctx->salt);
ctx->salt = NULL;
ctx->saltlen = 0U;
return 0;
}
static int kdf_argon2_ctx_set_ad(KDF_ARGON2 *ctx, const OSSL_PARAM *p)
{
size_t buflen;
if (p->data == NULL)
return 0;
if (ctx->ad != NULL) {
OPENSSL_clear_free(ctx->ad, ctx->adlen);
ctx->ad = NULL;
ctx->adlen = 0U;
}
if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->ad, 0, &buflen))
return 0;
if (buflen > ARGON2_MAX_AD_LENGTH) {
OPENSSL_free(ctx->ad);
ctx->ad = NULL;
ctx->adlen = 0U;
return 0;
}
ctx->adlen = (uint32_t) buflen;
return 1;
}
static void kdf_argon2_ctx_set_flag_early_clean(KDF_ARGON2 *ctx, uint32_t f)
{
ctx->early_clean = !!(f);
}
static int kdf_argon2_ctx_set_version(KDF_ARGON2 *ctx, uint32_t version)
{
switch (version) {
case ARGON2_VERSION_10:
case ARGON2_VERSION_13:
ctx->version = version;
return 1;
default:
ERR_raise_data(ERR_LIB_PROV, PROV_R_INVALID_MODE,
"invalid Argon2 version");
return 0;
}
}
static int set_property_query(KDF_ARGON2 *ctx, const char *propq)
{
OPENSSL_free(ctx->propq);
ctx->propq = NULL;
if (propq != NULL) {
ctx->propq = OPENSSL_strdup(propq);
if (ctx->propq == NULL)
return 0;
}
return 1;
}
static int kdf_argon2_set_ctx_params(void *vctx, const OSSL_PARAM params[])
{
const OSSL_PARAM *p;
KDF_ARGON2 *ctx;
uint32_t u32_value;
if (params == NULL)
return 1;
ctx = (KDF_ARGON2 *) vctx;
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL)
if (!kdf_argon2_ctx_set_pwd(ctx, p))
return 0;
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL)
if (!kdf_argon2_ctx_set_salt(ctx, p))
return 0;
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL)
if (!kdf_argon2_ctx_set_secret(ctx, p))
return 0;
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ARGON2_AD)) != NULL)
if (!kdf_argon2_ctx_set_ad(ctx, p))
return 0;
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SIZE)) != NULL) {
if (!OSSL_PARAM_get_uint32(p, &u32_value))
return 0;
if (!kdf_argon2_ctx_set_out_length(ctx, u32_value))
return 0;
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ITER)) != NULL) {
if (!OSSL_PARAM_get_uint32(p, &u32_value))
return 0;
if (!kdf_argon2_ctx_set_t_cost(ctx, u32_value))
return 0;
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_THREADS)) != NULL) {
if (!OSSL_PARAM_get_uint32(p, &u32_value))
return 0;
if (!kdf_argon2_ctx_set_threads(ctx, u32_value))
return 0;
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ARGON2_LANES)) != NULL) {
if (!OSSL_PARAM_get_uint32(p, &u32_value))
return 0;
if (!kdf_argon2_ctx_set_lanes(ctx, u32_value))
return 0;
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ARGON2_MEMCOST)) != NULL) {
if (!OSSL_PARAM_get_uint32(p, &u32_value))
return 0;
if (!kdf_argon2_ctx_set_m_cost(ctx, u32_value))
return 0;
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_EARLY_CLEAN)) != NULL) {
if (!OSSL_PARAM_get_uint32(p, &u32_value))
return 0;
kdf_argon2_ctx_set_flag_early_clean(ctx, u32_value);
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ARGON2_VERSION)) != NULL) {
if (!OSSL_PARAM_get_uint32(p, &u32_value))
return 0;
if (!kdf_argon2_ctx_set_version(ctx, u32_value))
return 0;
}
if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES)) != NULL) {
if (p->data_type != OSSL_PARAM_UTF8_STRING
|| !set_property_query(ctx, p->data))
return 0;
}
return 1;
}
static const OSSL_PARAM *kdf_argon2_settable_ctx_params(ossl_unused void *ctx,
ossl_unused void *p_ctx)
{
static const OSSL_PARAM known_settable_ctx_params[] = {
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0),
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0),
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0),
OSSL_PARAM_octet_string(OSSL_KDF_PARAM_ARGON2_AD, NULL, 0),
OSSL_PARAM_uint32(OSSL_KDF_PARAM_SIZE, NULL),
OSSL_PARAM_uint32(OSSL_KDF_PARAM_ITER, NULL),
OSSL_PARAM_uint32(OSSL_KDF_PARAM_THREADS, NULL),
OSSL_PARAM_uint32(OSSL_KDF_PARAM_ARGON2_LANES, NULL),
OSSL_PARAM_uint32(OSSL_KDF_PARAM_ARGON2_MEMCOST, NULL),
OSSL_PARAM_uint32(OSSL_KDF_PARAM_EARLY_CLEAN, NULL),
OSSL_PARAM_uint32(OSSL_KDF_PARAM_ARGON2_VERSION, NULL),
OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0),
OSSL_PARAM_END
};
return known_settable_ctx_params;
}
static int kdf_argon2_get_ctx_params(void *vctx, OSSL_PARAM params[])
{
OSSL_PARAM *p;
(void) vctx;
if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL)
return OSSL_PARAM_set_size_t(p, SIZE_MAX);
return -2;
}
static const OSSL_PARAM *kdf_argon2_gettable_ctx_params(ossl_unused void *ctx,
ossl_unused void *p_ctx)
{
static const OSSL_PARAM known_gettable_ctx_params[] = {
OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL),
OSSL_PARAM_END
};
return known_gettable_ctx_params;
}
const OSSL_DISPATCH ossl_kdf_argon2i_functions[] = {
{ OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_argon2i_new },
{ OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_argon2_free },
{ OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_argon2_reset },
{ OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_argon2_derive },
{ OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
(void(*)(void))kdf_argon2_settable_ctx_params },
{ OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_argon2_set_ctx_params },
{ OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
(void(*)(void))kdf_argon2_gettable_ctx_params },
{ OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_argon2_get_ctx_params },
{ 0, NULL }
};
const OSSL_DISPATCH ossl_kdf_argon2d_functions[] = {
{ OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_argon2d_new },
{ OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_argon2_free },
{ OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_argon2_reset },
{ OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_argon2_derive },
{ OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
(void(*)(void))kdf_argon2_settable_ctx_params },
{ OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_argon2_set_ctx_params },
{ OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
(void(*)(void))kdf_argon2_gettable_ctx_params },
{ OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_argon2_get_ctx_params },
{ 0, NULL }
};
const OSSL_DISPATCH ossl_kdf_argon2id_functions[] = {
{ OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_argon2id_new },
{ OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_argon2_free },
{ OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_argon2_reset },
{ OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_argon2_derive },
{ OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS,
(void(*)(void))kdf_argon2_settable_ctx_params },
{ OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_argon2_set_ctx_params },
{ OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS,
(void(*)(void))kdf_argon2_gettable_ctx_params },
{ OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_argon2_get_ctx_params },
{ 0, NULL }
};
#endif