async-book/examples/02_04_executor/src/lib.rs

135 lines
4.3 KiB
Rust

#![cfg(test)]
// ANCHOR: imports
use futures::{
future::{BoxFuture, FutureExt},
task::{waker_ref, ArcWake},
};
use std::{
future::Future,
sync::mpsc::{sync_channel, Receiver, SyncSender},
sync::{Arc, Mutex},
task::Context,
time::Duration,
};
// The timer we wrote in the previous section:
use timer_future::TimerFuture;
// ANCHOR_END: imports
// ANCHOR: executor_decl
/// Task executor that receives tasks off of a channel and runs them.
struct Executor {
ready_queue: Receiver<Arc<Task>>,
}
/// `Spawner` spawns new futures onto the task channel.
#[derive(Clone)]
struct Spawner {
task_sender: SyncSender<Arc<Task>>,
}
/// A future that can reschedule itself to be polled by an `Executor`.
struct Task {
/// In-progress future that should be pushed to completion.
///
/// The `Mutex` is not necessary for correctness, since we only have
/// one thread executing tasks at once. However, Rust isn't smart
/// enough to know that `future` is only mutated from one thread,
/// so we need to use the `Mutex` to prove thread-safety. A production
/// executor would not need this, and could use `UnsafeCell` instead.
future: Mutex<Option<BoxFuture<'static, ()>>>,
/// Handle to place the task itself back onto the task queue.
task_sender: SyncSender<Arc<Task>>,
}
fn new_executor_and_spawner() -> (Executor, Spawner) {
// Maximum number of tasks to allow queueing in the channel at once.
// This is just to make `sync_channel` happy, and wouldn't be present in
// a real executor.
const MAX_QUEUED_TASKS: usize = 10_000;
let (task_sender, ready_queue) = sync_channel(MAX_QUEUED_TASKS);
(Executor { ready_queue }, Spawner { task_sender })
}
// ANCHOR_END: executor_decl
// ANCHOR: spawn_fn
impl Spawner {
fn spawn(&self, future: impl Future<Output = ()> + 'static + Send) {
let future = future.boxed();
let task = Arc::new(Task {
future: Mutex::new(Some(future)),
task_sender: self.task_sender.clone(),
});
self.task_sender.send(task).expect("too many tasks queued");
}
}
// ANCHOR_END: spawn_fn
// ANCHOR: arcwake_for_task
impl ArcWake for Task {
fn wake_by_ref(arc_self: &Arc<Self>) {
// Implement `wake` by sending this task back onto the task channel
// so that it will be polled again by the executor.
let cloned = arc_self.clone();
arc_self
.task_sender
.send(cloned)
.expect("too many tasks queued");
}
}
// ANCHOR_END: arcwake_for_task
// ANCHOR: executor_run
impl Executor {
fn run(&self) {
while let Ok(task) = self.ready_queue.recv() {
// Take the future, and if it has not yet completed (is still Some),
// poll it in an attempt to complete it.
let mut future_slot = task.future.lock().unwrap();
if let Some(mut future) = future_slot.take() {
// Create a `LocalWaker` from the task itself
let waker = waker_ref(&task);
let context = &mut Context::from_waker(&waker);
// `BoxFuture<T>` is a type alias for
// `Pin<Box<dyn Future<Output = T> + Send + 'static>>`.
// We can get a `Pin<&mut dyn Future + Send + 'static>`
// from it by calling the `Pin::as_mut` method.
if future.as_mut().poll(context).is_pending() {
// We're not done processing the future, so put it
// back in its task to be run again in the future.
*future_slot = Some(future);
}
}
}
}
}
// ANCHOR_END: executor_run
// ANCHOR: main
fn main() {
let (executor, spawner) = new_executor_and_spawner();
// Spawn a task to print before and after waiting on a timer.
spawner.spawn(async {
println!("howdy!");
// Wait for our timer future to complete after two seconds.
TimerFuture::new(Duration::new(2, 0)).await;
println!("done!");
});
// Drop the spawner so that our executor knows it is finished and won't
// receive more incoming tasks to run.
drop(spawner);
// Run the executor until the task queue is empty.
// This will print "howdy!", pause, and then print "done!".
executor.run();
}
// ANCHOR_END: main
#[test]
fn run_main() {
main()
}