rustls/rustls/src/tls12/mod.rs

541 lines
17 KiB
Rust

use crate::cipher::{MessageDecrypter, MessageEncrypter};
use crate::common_state::{CommonState, Side};
use crate::conn::ConnectionRandoms;
use crate::crypto;
use crate::enums::{AlertDescription, CipherSuite, SignatureScheme};
use crate::error::{Error, InvalidMessage};
use crate::msgs::codec::{Codec, Reader};
use crate::msgs::handshake::KeyExchangeAlgorithm;
use crate::suites::{BulkAlgorithm, CipherSuiteCommon, SupportedCipherSuite};
#[cfg(feature = "secret_extraction")]
use crate::suites::{ConnectionTrafficSecrets, PartiallyExtractedSecrets};
use ring::aead;
use ring::digest::Digest;
use core::fmt;
mod cipher;
pub(crate) use cipher::{AesGcm, ChaCha20Poly1305, Tls12AeadAlgorithm};
mod prf;
/// The TLS1.2 ciphersuite TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256.
pub static TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256: SupportedCipherSuite =
SupportedCipherSuite::Tls12(&Tls12CipherSuite {
common: CipherSuiteCommon {
suite: CipherSuite::TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
bulk: BulkAlgorithm::Chacha20Poly1305,
aead_algorithm: &ring::aead::CHACHA20_POLY1305,
},
kx: KeyExchangeAlgorithm::ECDHE,
sign: TLS12_ECDSA_SCHEMES,
fixed_iv_len: 12,
explicit_nonce_len: 0,
aead_alg: &ChaCha20Poly1305,
hmac_algorithm: ring::hmac::HMAC_SHA256,
});
/// The TLS1.2 ciphersuite TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
pub static TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256: SupportedCipherSuite =
SupportedCipherSuite::Tls12(&Tls12CipherSuite {
common: CipherSuiteCommon {
suite: CipherSuite::TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
bulk: BulkAlgorithm::Chacha20Poly1305,
aead_algorithm: &ring::aead::CHACHA20_POLY1305,
},
kx: KeyExchangeAlgorithm::ECDHE,
sign: TLS12_RSA_SCHEMES,
fixed_iv_len: 12,
explicit_nonce_len: 0,
aead_alg: &ChaCha20Poly1305,
hmac_algorithm: ring::hmac::HMAC_SHA256,
});
/// The TLS1.2 ciphersuite TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
pub static TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256: SupportedCipherSuite =
SupportedCipherSuite::Tls12(&Tls12CipherSuite {
common: CipherSuiteCommon {
suite: CipherSuite::TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
bulk: BulkAlgorithm::Aes128Gcm,
aead_algorithm: &ring::aead::AES_128_GCM,
},
kx: KeyExchangeAlgorithm::ECDHE,
sign: TLS12_RSA_SCHEMES,
fixed_iv_len: 4,
explicit_nonce_len: 8,
aead_alg: &AesGcm,
hmac_algorithm: ring::hmac::HMAC_SHA256,
});
/// The TLS1.2 ciphersuite TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
pub static TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384: SupportedCipherSuite =
SupportedCipherSuite::Tls12(&Tls12CipherSuite {
common: CipherSuiteCommon {
suite: CipherSuite::TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
bulk: BulkAlgorithm::Aes256Gcm,
aead_algorithm: &ring::aead::AES_256_GCM,
},
kx: KeyExchangeAlgorithm::ECDHE,
sign: TLS12_RSA_SCHEMES,
fixed_iv_len: 4,
explicit_nonce_len: 8,
aead_alg: &AesGcm,
hmac_algorithm: ring::hmac::HMAC_SHA384,
});
/// The TLS1.2 ciphersuite TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
pub static TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256: SupportedCipherSuite =
SupportedCipherSuite::Tls12(&Tls12CipherSuite {
common: CipherSuiteCommon {
suite: CipherSuite::TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
bulk: BulkAlgorithm::Aes128Gcm,
aead_algorithm: &ring::aead::AES_128_GCM,
},
kx: KeyExchangeAlgorithm::ECDHE,
sign: TLS12_ECDSA_SCHEMES,
fixed_iv_len: 4,
explicit_nonce_len: 8,
aead_alg: &AesGcm,
hmac_algorithm: ring::hmac::HMAC_SHA256,
});
/// The TLS1.2 ciphersuite TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
pub static TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384: SupportedCipherSuite =
SupportedCipherSuite::Tls12(&Tls12CipherSuite {
common: CipherSuiteCommon {
suite: CipherSuite::TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
bulk: BulkAlgorithm::Aes256Gcm,
aead_algorithm: &ring::aead::AES_256_GCM,
},
kx: KeyExchangeAlgorithm::ECDHE,
sign: TLS12_ECDSA_SCHEMES,
fixed_iv_len: 4,
explicit_nonce_len: 8,
aead_alg: &AesGcm,
hmac_algorithm: ring::hmac::HMAC_SHA384,
});
static TLS12_ECDSA_SCHEMES: &[SignatureScheme] = &[
SignatureScheme::ED25519,
SignatureScheme::ED448,
SignatureScheme::ECDSA_SECP521R1_SHA512,
SignatureScheme::ECDSA_SECP384R1_SHA384,
SignatureScheme::ECDSA_SECP256R1_SHA256,
];
static TLS12_RSA_SCHEMES: &[SignatureScheme] = &[
SignatureScheme::RSA_PSS_RSAE_SHA512,
SignatureScheme::RSA_PSS_RSAE_SHA384,
SignatureScheme::RSA_PSS_RSAE_SHA256,
SignatureScheme::RSA_PKCS1_SHA512,
SignatureScheme::RSA_PKCS1_SHA384,
SignatureScheme::RSA_PKCS1_SHA256,
];
/// A TLS 1.2 cipher suite supported by rustls.
pub struct Tls12CipherSuite {
/// Common cipher suite fields.
pub common: CipherSuiteCommon,
pub(crate) hmac_algorithm: ring::hmac::Algorithm,
/// How to exchange/agree keys.
pub kx: KeyExchangeAlgorithm,
/// How to sign messages for authentication.
pub sign: &'static [SignatureScheme],
/// How long the fixed part of the 'IV' is.
///
/// This isn't usually an IV, but we continue the
/// terminology misuse to match the standard.
pub fixed_iv_len: usize,
/// This is a non-standard extension which extends the
/// key block to provide an initial explicit nonce offset,
/// in a deterministic and safe way. GCM needs this,
/// chacha20poly1305 works this way by design.
pub explicit_nonce_len: usize,
pub(crate) aead_alg: &'static dyn Tls12AeadAlgorithm,
}
impl Tls12CipherSuite {
/// Resolve the set of supported `SignatureScheme`s from the
/// offered `SupportedSignatureSchemes`. If we return an empty
/// set, the handshake terminates.
pub fn resolve_sig_schemes(&self, offered: &[SignatureScheme]) -> Vec<SignatureScheme> {
self.sign
.iter()
.filter(|pref| offered.contains(pref))
.cloned()
.collect()
}
/// Which hash function to use with this suite.
pub fn hash_algorithm(&self) -> &'static ring::digest::Algorithm {
self.hmac_algorithm.digest_algorithm()
}
}
impl From<&'static Tls12CipherSuite> for SupportedCipherSuite {
fn from(s: &'static Tls12CipherSuite) -> Self {
Self::Tls12(s)
}
}
impl PartialEq for Tls12CipherSuite {
fn eq(&self, other: &Self) -> bool {
self.common.suite == other.common.suite
}
}
impl fmt::Debug for Tls12CipherSuite {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Tls12CipherSuite")
.field("suite", &self.common.suite)
.field("bulk", &self.common.bulk)
.finish()
}
}
/// TLS1.2 per-connection keying material
pub(crate) struct ConnectionSecrets {
pub(crate) randoms: ConnectionRandoms,
suite: &'static Tls12CipherSuite,
pub(crate) master_secret: [u8; 48],
}
impl ConnectionSecrets {
pub(crate) fn from_key_exchange(
kx: impl crypto::KeyExchange,
peer_pub_key: &[u8],
ems_seed: Option<Digest>,
randoms: ConnectionRandoms,
suite: &'static Tls12CipherSuite,
) -> Result<Self, Error> {
let mut ret = Self {
randoms,
suite,
master_secret: [0u8; 48],
};
let (label, seed) = match ems_seed {
Some(seed) => ("extended master secret", Seed::Ems(seed)),
None => (
"master secret",
Seed::Randoms(join_randoms(&ret.randoms.client, &ret.randoms.server)),
),
};
kx.complete(peer_pub_key, |secret| {
prf::prf(
&mut ret.master_secret,
suite.hmac_algorithm,
secret,
label.as_bytes(),
seed.as_ref(),
);
Ok(())
})?;
Ok(ret)
}
pub(crate) fn new_resume(
randoms: ConnectionRandoms,
suite: &'static Tls12CipherSuite,
master_secret: &[u8],
) -> Self {
let mut ret = Self {
randoms,
suite,
master_secret: [0u8; 48],
};
ret.master_secret
.copy_from_slice(master_secret);
ret
}
/// Make a `MessageCipherPair` based on the given supported ciphersuite `scs`,
/// and the session's `secrets`.
pub(crate) fn make_cipher_pair(&self, side: Side) -> MessageCipherPair {
fn split_key<'a>(
key_block: &'a [u8],
alg: &'static aead::Algorithm,
) -> (aead::LessSafeKey, &'a [u8]) {
// Might panic if the key block is too small.
let (key, rest) = key_block.split_at(alg.key_len());
// Won't panic because its only prerequisite is that `key` is `alg.key_len()` bytes long.
let key = aead::UnboundKey::new(alg, key).unwrap();
(aead::LessSafeKey::new(key), rest)
}
// Make a key block, and chop it up.
// nb. we don't implement any ciphersuites with nonzero mac_key_len.
let key_block = self.make_key_block();
let suite = self.suite;
let scs = &suite.common;
let (client_write_key, key_block) = split_key(&key_block, scs.aead_algorithm);
let (server_write_key, key_block) = split_key(key_block, scs.aead_algorithm);
let (client_write_iv, key_block) = key_block.split_at(suite.fixed_iv_len);
let (server_write_iv, extra) = key_block.split_at(suite.fixed_iv_len);
let (write_key, write_iv, read_key, read_iv) = match side {
Side::Client => (
client_write_key,
client_write_iv,
server_write_key,
server_write_iv,
),
Side::Server => (
server_write_key,
server_write_iv,
client_write_key,
client_write_iv,
),
};
(
suite
.aead_alg
.decrypter(read_key, read_iv),
suite
.aead_alg
.encrypter(write_key, write_iv, extra),
)
}
fn make_key_block(&self) -> Vec<u8> {
let suite = &self.suite;
let common = &self.suite.common;
let len =
(common.aead_algorithm.key_len() + suite.fixed_iv_len) * 2 + suite.explicit_nonce_len;
let mut out = Vec::new();
out.resize(len, 0u8);
// NOTE: opposite order to above for no good reason.
// Don't design security protocols on drugs, kids.
let randoms = join_randoms(&self.randoms.server, &self.randoms.client);
prf::prf(
&mut out,
self.suite.hmac_algorithm,
&self.master_secret,
b"key expansion",
&randoms,
);
out
}
pub(crate) fn suite(&self) -> &'static Tls12CipherSuite {
self.suite
}
pub(crate) fn get_master_secret(&self) -> Vec<u8> {
let mut ret = Vec::new();
ret.extend_from_slice(&self.master_secret);
ret
}
fn make_verify_data(&self, handshake_hash: &Digest, label: &[u8]) -> Vec<u8> {
let mut out = Vec::new();
out.resize(12, 0u8);
prf::prf(
&mut out,
self.suite.hmac_algorithm,
&self.master_secret,
label,
handshake_hash.as_ref(),
);
out
}
pub(crate) fn client_verify_data(&self, handshake_hash: &Digest) -> Vec<u8> {
self.make_verify_data(handshake_hash, b"client finished")
}
pub(crate) fn server_verify_data(&self, handshake_hash: &Digest) -> Vec<u8> {
self.make_verify_data(handshake_hash, b"server finished")
}
pub(crate) fn export_keying_material(
&self,
output: &mut [u8],
label: &[u8],
context: Option<&[u8]>,
) {
let mut randoms = Vec::new();
randoms.extend_from_slice(&self.randoms.client);
randoms.extend_from_slice(&self.randoms.server);
if let Some(context) = context {
assert!(context.len() <= 0xffff);
(context.len() as u16).encode(&mut randoms);
randoms.extend_from_slice(context);
}
prf::prf(
output,
self.suite.hmac_algorithm,
&self.master_secret,
label,
&randoms,
);
}
#[cfg(feature = "secret_extraction")]
pub(crate) fn extract_secrets(&self, side: Side) -> Result<PartiallyExtractedSecrets, Error> {
// Make a key block, and chop it up
let key_block = self.make_key_block();
let suite = self.suite;
let algo = suite.common.aead_algorithm;
let (client_key, key_block) = key_block.split_at(algo.key_len());
let (server_key, key_block) = key_block.split_at(algo.key_len());
let (client_iv, key_block) = key_block.split_at(suite.fixed_iv_len);
let (server_iv, extra) = key_block.split_at(suite.fixed_iv_len);
// A key/IV pair (fixed IV len is 4 for GCM, 12 for Chacha)
struct Pair<'a> {
key: &'a [u8],
iv: &'a [u8],
}
let client_pair = Pair {
key: client_key,
iv: client_iv,
};
let server_pair = Pair {
key: server_key,
iv: server_iv,
};
let (client_secrets, server_secrets) = if algo == &ring::aead::AES_128_GCM {
let extract = |pair: Pair| -> ConnectionTrafficSecrets {
let mut key = [0u8; 16];
key.copy_from_slice(pair.key);
let mut salt = [0u8; 4];
salt.copy_from_slice(pair.iv);
let mut iv = [0u8; 8];
iv.copy_from_slice(&extra[..8]);
ConnectionTrafficSecrets::Aes128Gcm { key, salt, iv }
};
(extract(client_pair), extract(server_pair))
} else if algo == &ring::aead::AES_256_GCM {
let extract = |pair: Pair| -> ConnectionTrafficSecrets {
let mut key = [0u8; 32];
key.copy_from_slice(pair.key);
let mut salt = [0u8; 4];
salt.copy_from_slice(pair.iv);
let mut iv = [0u8; 8];
iv.copy_from_slice(&extra[..8]);
ConnectionTrafficSecrets::Aes256Gcm { key, salt, iv }
};
(extract(client_pair), extract(server_pair))
} else if algo == &ring::aead::CHACHA20_POLY1305 {
let extract = |pair: Pair| -> ConnectionTrafficSecrets {
let mut key = [0u8; 32];
key.copy_from_slice(pair.key);
let mut iv = [0u8; 12];
iv.copy_from_slice(pair.iv);
ConnectionTrafficSecrets::Chacha20Poly1305 { key, iv }
};
(extract(client_pair), extract(server_pair))
} else {
return Err(Error::General(format!(
"exporting secrets for {:?}: unimplemented",
algo
)));
};
let (tx, rx) = match side {
Side::Client => (client_secrets, server_secrets),
Side::Server => (server_secrets, client_secrets),
};
Ok(PartiallyExtractedSecrets { tx, rx })
}
}
enum Seed {
Ems(Digest),
Randoms([u8; 64]),
}
impl AsRef<[u8]> for Seed {
fn as_ref(&self) -> &[u8] {
match self {
Self::Ems(seed) => seed.as_ref(),
Self::Randoms(randoms) => randoms.as_ref(),
}
}
}
fn join_randoms(first: &[u8; 32], second: &[u8; 32]) -> [u8; 64] {
let mut randoms = [0u8; 64];
randoms[..32].copy_from_slice(first);
randoms[32..].copy_from_slice(second);
randoms
}
type MessageCipherPair = (Box<dyn MessageDecrypter>, Box<dyn MessageEncrypter>);
pub(crate) fn decode_ecdh_params<T: Codec>(
common: &mut CommonState,
kx_params: &[u8],
) -> Result<T, Error> {
let mut rd = Reader::init(kx_params);
let ecdh_params = T::read(&mut rd)?;
match rd.any_left() {
false => Ok(ecdh_params),
true => Err(common.send_fatal_alert(
AlertDescription::DecodeError,
InvalidMessage::InvalidDhParams,
)),
}
}
pub(crate) const DOWNGRADE_SENTINEL: [u8; 8] = [0x44, 0x4f, 0x57, 0x4e, 0x47, 0x52, 0x44, 0x01];
#[cfg(test)]
mod tests {
use super::*;
use crate::common_state::{CommonState, Side};
use crate::crypto::ring::{self, X25519};
use crate::crypto::KeyExchange;
use crate::msgs::handshake::{ClientECDHParams, ServerECDHParams};
#[test]
fn server_ecdhe_remaining_bytes() {
let key = ring::KeyExchange::start(crate::NamedGroup::X25519, &[&X25519]).unwrap();
let server_params = ServerECDHParams::new(key.group(), key.pub_key());
let mut server_buf = Vec::new();
server_params.encode(&mut server_buf);
server_buf.push(34);
let mut common = CommonState::new(Side::Client);
assert!(decode_ecdh_params::<ServerECDHParams>(&mut common, &server_buf).is_err());
}
#[test]
fn client_ecdhe_invalid() {
let mut common = CommonState::new(Side::Server);
assert!(decode_ecdh_params::<ClientECDHParams>(&mut common, &[34]).is_err());
}
}