rustls/rustls/src/stream.rs

245 lines
6.6 KiB
Rust

use core::ops::{Deref, DerefMut};
use std::io::{IoSlice, Read, Result, Write};
use crate::conn::{ConnectionCommon, SideData};
/// This type implements `io::Read` and `io::Write`, encapsulating
/// a Connection `C` and an underlying transport `T`, such as a socket.
///
/// This allows you to use a rustls Connection like a normal stream.
#[derive(Debug)]
pub struct Stream<'a, C: 'a + ?Sized, T: 'a + Read + Write + ?Sized> {
/// Our TLS connection
pub conn: &'a mut C,
/// The underlying transport, like a socket
pub sock: &'a mut T,
}
impl<'a, C, T, S> Stream<'a, C, T>
where
C: 'a + DerefMut + Deref<Target = ConnectionCommon<S>>,
T: 'a + Read + Write,
S: SideData,
{
/// Make a new Stream using the Connection `conn` and socket-like object
/// `sock`. This does not fail and does no IO.
pub fn new(conn: &'a mut C, sock: &'a mut T) -> Self {
Self { conn, sock }
}
/// If we're handshaking, complete all the IO for that.
/// If we have data to write, write it all.
fn complete_prior_io(&mut self) -> Result<()> {
if self.conn.is_handshaking() {
self.conn.complete_io(self.sock)?;
}
if self.conn.wants_write() {
self.conn.complete_io(self.sock)?;
}
Ok(())
}
}
impl<'a, C, T, S> Read for Stream<'a, C, T>
where
C: 'a + DerefMut + Deref<Target = ConnectionCommon<S>>,
T: 'a + Read + Write,
S: SideData,
{
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
self.complete_prior_io()?;
// We call complete_io() in a loop since a single call may read only
// a partial packet from the underlying transport. A full packet is
// needed to get more plaintext, which we must do if EOF has not been
// hit.
while self.conn.wants_read() {
if self.conn.complete_io(self.sock)?.0 == 0 {
break;
}
}
self.conn.reader().read(buf)
}
#[cfg(read_buf)]
fn read_buf(&mut self, cursor: core::io::BorrowedCursor<'_>) -> Result<()> {
self.complete_prior_io()?;
// We call complete_io() in a loop since a single call may read only
// a partial packet from the underlying transport. A full packet is
// needed to get more plaintext, which we must do if EOF has not been
// hit.
while self.conn.wants_read() {
if self.conn.complete_io(self.sock)?.0 == 0 {
break;
}
}
self.conn.reader().read_buf(cursor)
}
}
impl<'a, C, T, S> Write for Stream<'a, C, T>
where
C: 'a + DerefMut + Deref<Target = ConnectionCommon<S>>,
T: 'a + Read + Write,
S: SideData,
{
fn write(&mut self, buf: &[u8]) -> Result<usize> {
self.complete_prior_io()?;
let len = self.conn.writer().write(buf)?;
// Try to write the underlying transport here, but don't let
// any errors mask the fact we've consumed `len` bytes.
// Callers will learn of permanent errors on the next call.
let _ = self.conn.complete_io(self.sock);
Ok(len)
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
self.complete_prior_io()?;
let len = self
.conn
.writer()
.write_vectored(bufs)?;
// Try to write the underlying transport here, but don't let
// any errors mask the fact we've consumed `len` bytes.
// Callers will learn of permanent errors on the next call.
let _ = self.conn.complete_io(self.sock);
Ok(len)
}
fn flush(&mut self) -> Result<()> {
self.complete_prior_io()?;
self.conn.writer().flush()?;
if self.conn.wants_write() {
self.conn.complete_io(self.sock)?;
}
Ok(())
}
}
/// This type implements `io::Read` and `io::Write`, encapsulating
/// and owning a Connection `C` and an underlying blocking transport
/// `T`, such as a socket.
///
/// This allows you to use a rustls Connection like a normal stream.
#[derive(Debug)]
pub struct StreamOwned<C: Sized, T: Read + Write + Sized> {
/// Our connection
pub conn: C,
/// The underlying transport, like a socket
pub sock: T,
}
impl<C, T, S> StreamOwned<C, T>
where
C: DerefMut + Deref<Target = ConnectionCommon<S>>,
T: Read + Write,
S: SideData,
{
/// Make a new StreamOwned taking the Connection `conn` and socket-like
/// object `sock`. This does not fail and does no IO.
///
/// This is the same as `Stream::new` except `conn` and `sock` are
/// moved into the StreamOwned.
pub fn new(conn: C, sock: T) -> Self {
Self { conn, sock }
}
/// Get a reference to the underlying socket
pub fn get_ref(&self) -> &T {
&self.sock
}
/// Get a mutable reference to the underlying socket
pub fn get_mut(&mut self) -> &mut T {
&mut self.sock
}
/// Extract the `conn` and `sock` parts from the `StreamOwned`
pub fn into_parts(self) -> (C, T) {
(self.conn, self.sock)
}
}
impl<'a, C, T, S> StreamOwned<C, T>
where
C: DerefMut + Deref<Target = ConnectionCommon<S>>,
T: Read + Write,
S: SideData,
{
fn as_stream(&'a mut self) -> Stream<'a, C, T> {
Stream {
conn: &mut self.conn,
sock: &mut self.sock,
}
}
}
impl<C, T, S> Read for StreamOwned<C, T>
where
C: DerefMut + Deref<Target = ConnectionCommon<S>>,
T: Read + Write,
S: SideData,
{
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
self.as_stream().read(buf)
}
#[cfg(read_buf)]
fn read_buf(&mut self, cursor: core::io::BorrowedCursor<'_>) -> Result<()> {
self.as_stream().read_buf(cursor)
}
}
impl<C, T, S> Write for StreamOwned<C, T>
where
C: DerefMut + Deref<Target = ConnectionCommon<S>>,
T: Read + Write,
S: SideData,
{
fn write(&mut self, buf: &[u8]) -> Result<usize> {
self.as_stream().write(buf)
}
fn flush(&mut self) -> Result<()> {
self.as_stream().flush()
}
}
#[cfg(test)]
mod tests {
use std::net::TcpStream;
use super::{Stream, StreamOwned};
use crate::client::ClientConnection;
use crate::server::ServerConnection;
#[test]
fn stream_can_be_created_for_connection_and_tcpstream() {
type _Test<'a> = Stream<'a, ClientConnection, TcpStream>;
}
#[test]
fn streamowned_can_be_created_for_client_and_tcpstream() {
type _Test = StreamOwned<ClientConnection, TcpStream>;
}
#[test]
fn streamowned_can_be_created_for_server_and_tcpstream() {
type _Test = StreamOwned<ServerConnection, TcpStream>;
}
}