Refactor the executor

This commit is contained in:
Stjepan Glavina 2020-06-18 16:03:26 +02:00
parent 3e78e59f52
commit 01dd5dccc9
11 changed files with 670 additions and 752 deletions

View File

@ -33,7 +33,7 @@ futures-io = { version = "0.3.5", default-features = false, features = ["std"] }
futures-util = { version = "0.3.5", default-features = false, features = ["std", "io"] }
once_cell = "1.3.1"
piper = "0.1.2"
scoped-tls-hkt = "0.1.2"
scoped-tls = "1.0.0"
slab = "0.4.2"
socket2 = { version = "0.3.12", features = ["pair", "unix"] }

476
src/executor.rs Normal file
View File

@ -0,0 +1,476 @@
use std::cell::Cell;
use std::future::Future;
use std::panic;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, Mutex, RwLock};
use std::thread::{self, ThreadId};
use concurrent_queue::{ConcurrentQueue, PopError, PushError};
use scoped_tls::scoped_thread_local;
use slab::Slab;
use crate::task::{Runnable, Task};
scoped_thread_local! {
static WORKER: Worker
}
/// State shared between [`Queue`] and [`Worker`].
struct Global {
/// The global queue.
queue: ConcurrentQueue<Runnable>,
/// Shards of the global queue created by workers.
shards: RwLock<Slab<Arc<ConcurrentQueue<Runnable>>>>,
/// Set to `true` when a sleeping worker is notified or no workers are sleeping.
notified: AtomicBool,
/// A list of sleeping workers.
sleepers: Mutex<Sleepers>,
}
impl Global {
/// Notifies a sleeping worker.
fn notify(&self) {
if !self
.notified
.compare_and_swap(false, true, Ordering::SeqCst)
{
let callback = self.sleepers.lock().unwrap().notify();
if let Some(cb) = callback {
(cb)();
}
}
}
}
/// A list of sleeping workers.
struct Sleepers {
/// Number of sleeping workers.
count: usize,
/// Callbacks of sleeping unnotified workers.
callbacks: Vec<Arc<dyn Fn() + Send + Sync>>,
}
impl Sleepers {
/// Inserts a new sleeping worker.
fn insert(&mut self, callback: &Arc<dyn Fn() + Send + Sync>) {
self.count += 1;
self.callbacks.push(callback.clone());
}
/// Updates the callback of an already inserted worker.
fn update(&mut self, callback: &Arc<dyn Fn() + Send + Sync>) {
if self.callbacks.iter().all(|cb| !Arc::ptr_eq(cb, callback)) {
self.callbacks.push(callback.clone());
}
}
/// Removes a previously inserted worker.
fn remove(&mut self, callback: &Arc<dyn Fn() + Send + Sync>) {
self.count -= 1;
for i in (0..self.callbacks.len()).rev() {
if Arc::ptr_eq(&self.callbacks[i], callback) {
self.callbacks.remove(i);
return;
}
}
}
/// Returns `true` if a sleeping worker is notified or no workers are sleeping.
fn is_notified(&self) -> bool {
self.count == 0 || self.count > self.callbacks.len()
}
/// Returns notification callback for a sleeping worker.
///
/// If a worker was notified already or there are no workers, `None` will be returned.
fn notify(&mut self) -> Option<Arc<dyn Fn() + Send + Sync>> {
if self.callbacks.len() == self.count {
self.callbacks.pop().clone()
} else {
None
}
}
}
/// A queue for spawning tasks.
pub(crate) struct Queue {
global: Arc<Global>,
}
impl Queue {
/// Creates a new queue for spawning tasks.
pub fn new() -> Queue {
Queue {
global: Arc::new(Global {
queue: ConcurrentQueue::unbounded(),
shards: RwLock::new(Slab::new()),
notified: AtomicBool::new(true),
sleepers: Mutex::new(Sleepers {
count: 0,
callbacks: Vec::new(),
}),
}),
}
}
/// Spawns a future onto this queue.
///
/// Returns a [`Task`] handle for the spawned task.
pub fn spawn<T: Send + 'static>(
&self,
future: impl Future<Output = T> + Send + 'static,
) -> Task<T> {
let global = self.global.clone();
// The function that schedules a runnable task when it gets woken up.
let schedule = move |runnable| {
if WORKER.is_set() {
WORKER.with(|w| {
if Arc::ptr_eq(&global, &w.global) {
if let Err(err) = w.shard.push(runnable) {
global.queue.push(err.into_inner()).unwrap();
}
} else {
global.queue.push(runnable).unwrap();
}
});
} else {
global.queue.push(runnable).unwrap();
}
global.notify();
};
// Create a task, push it into the queue by scheduling it, and return its `Task` handle.
let (runnable, handle) = async_task::spawn(future, schedule, ());
runnable.schedule();
Task(Some(handle))
}
/// Registers a new worker.
///
/// The worker will automatically deregister itself when dropped.
pub fn worker(&self, notify: impl Fn() + Send + Sync + 'static) -> Worker {
let mut shards = self.global.shards.write().unwrap();
let vacant = shards.vacant_entry();
// Create a worker and put its stealer handle into the executor.
let worker = Worker {
key: vacant.key(),
global: Arc::new(self.global.clone()),
shard: SlotQueue {
slot: Cell::new(None),
queue: Arc::new(ConcurrentQueue::bounded(512)),
},
local: SlotQueue {
slot: Cell::new(None),
queue: Arc::new(ConcurrentQueue::unbounded()),
},
callback: Arc::new(notify),
sleeping: Cell::new(false),
ticker: Cell::new(0),
};
vacant.insert(worker.shard.queue.clone());
worker
}
}
/// A worker that participates in the work-stealing executor.
///
/// Each invocation of `run()` creates its own worker.
pub(crate) struct Worker {
/// The ID of this worker obtained during registration.
key: usize,
/// The global queue.
global: Arc<Arc<Global>>,
/// A shard of the global queue.
shard: SlotQueue<Runnable>,
/// Local queue for `!Send` tasks.
local: SlotQueue<Runnable>,
/// Callback invoked to wake this worker up.
callback: Arc<dyn Fn() + Send + Sync>,
/// Set to `true` when in sleeping state.
sleeping: Cell<bool>,
/// Bumped every time a task is run.
ticker: Cell<usize>,
}
impl Worker {
/// Spawns a local future onto this executor.
///
/// Returns a [`Task`] handle for the spawned task.
pub fn spawn_local<T: 'static>(&self, future: impl Future<Output = T> + 'static) -> Task<T> {
let queue = self.local.queue.clone();
let callback = self.callback.clone();
let id = thread_id();
// The function that schedules a runnable task when it gets woken up.
let schedule = move |runnable| {
if thread_id() == id && WORKER.is_set() {
WORKER.with(|w| {
if Arc::ptr_eq(&queue, &w.local.queue) {
w.local.push(runnable).unwrap();
} else {
queue.push(runnable).unwrap();
}
});
} else {
queue.push(runnable).unwrap();
}
callback();
};
// Create a task, push it into the queue by scheduling it, and return its `Task` handle.
let (runnable, handle) = async_task::spawn_local(future, schedule, ());
runnable.schedule();
Task(Some(handle))
}
/// Enters the context of this executor.
fn enter<T>(&self, f: impl FnOnce() -> T) -> T {
// TODO(stjepang): Allow recursive executors.
if WORKER.is_set() {
panic!("cannot run an executor inside another executor");
}
WORKER.set(self, f)
}
/// Moves the worker into sleeping state.
fn sleep(&self) -> bool {
let mut sleepers = self.global.sleepers.lock().unwrap();
if self.sleeping.get() {
sleepers.update(&self.callback);
self.global
.notified
.swap(sleepers.is_notified(), Ordering::SeqCst);
false
} else {
sleepers.insert(&self.callback);
self.global
.notified
.swap(sleepers.is_notified(), Ordering::SeqCst);
self.sleeping.set(true);
true
}
}
/// Moves the worker into woken state.
fn wake(&self) -> bool {
if self.sleeping.get() {
let mut sleepers = self.global.sleepers.lock().unwrap();
sleepers.remove(&self.callback);
self.global
.notified
.swap(sleepers.is_notified(), Ordering::SeqCst);
self.sleeping.set(false);
true
} else {
false
}
}
/// Runs a single task and returns `true` if one was found.
pub fn tick(&self) -> bool {
loop {
match self.search() {
None => {
// Go to sleep and then:
// - If already in sleeping state, return.
// - Otherwise, search again.
if !self.sleep() {
return false;
}
}
Some(r) => {
// Wake up.
if !self.wake() {
// If already woken, notify another worker.
self.global.notify();
}
// Bump the ticker.
let ticker = self.ticker.get();
self.ticker.set(ticker.wrapping_add(1));
// Flush slots to ensure fair task scheduling.
if ticker % 16 == 0 {
if let Err(err) = self.shard.flush() {
self.global.queue.push(err.into_inner()).unwrap();
self.global.notify();
}
self.local.flush().unwrap();
}
// Steal tasks from the global queue to ensure fair task scheduling.
if ticker % 64 == 0 {
self.shard.steal(&self.global.queue);
}
// Run the task.
if self.enter(|| r.run()) {
// The task was woken while it was running, which means it got
// scheduled the moment running completed. Therefore, it is now inside
// the slot and would be the next task to run.
//
// Instead of re-running the task in the next iteration, let's flush
// the slot in order to give other tasks a chance to run.
//
// This is a necessary step to ensure task yielding works as expected.
// If a task wakes itself and returns `Poll::Pending`, we don't want it
// to run immediately after that because that'd defeat the whole
// purpose of yielding.
if let Err(err) = self.shard.flush() {
self.global.queue.push(err.into_inner()).unwrap();
self.global.notify();
}
}
return true;
}
}
}
}
/// Finds the next task to run.
fn search(&self) -> Option<Runnable> {
if self.ticker.get() % 2 == 0 {
// On even ticks, look into the local queue and then into the shard.
if let Ok(r) = self.local.pop().or_else(|_| self.shard.pop()) {
return Some(r);
}
} else {
// On odd ticks, look into the shard and then into the local queue.
if let Ok(r) = self.shard.pop().or_else(|_| self.local.pop()) {
return Some(r);
}
}
// Try stealing from the global queue.
self.shard.steal(&self.global.queue);
if let Ok(r) = self.shard.pop() {
return Some(r);
}
// Try stealing from other shards.
let shards = self.global.shards.read().unwrap();
// Pick a random starting point in the iterator list and rotate the list.
let n = shards.len();
let start = fastrand::usize(..n);
let iter = shards.iter().chain(shards.iter()).skip(start).take(n);
// Remove this worker's shard.
let iter = iter.filter(|(key, _)| *key != self.key);
let iter = iter.map(|(_, shard)| shard);
// Try stealing from each shard in the list.
for shard in iter {
self.shard.steal(shard);
if let Ok(r) = self.shard.pop() {
return Some(r);
}
}
None
}
}
impl Drop for Worker {
fn drop(&mut self) {
// Wake and unregister the worker.
self.wake();
self.global.shards.write().unwrap().remove(self.key);
// Re-schedule remaining tasks in the shard.
while let Ok(r) = self.shard.pop() {
r.schedule();
}
// Notify another worker to start searching for tasks.
self.global.notify();
// TODO(stjepang): Close the local queue and empty it.
}
}
/// A queue with a single-item slot in front of it.
struct SlotQueue<T> {
slot: Cell<Option<T>>,
queue: Arc<ConcurrentQueue<T>>,
}
impl<T> SlotQueue<T> {
/// Pushes an item into the slot, overflowing the old item into the queue.
fn push(&self, t: T) -> Result<(), PushError<T>> {
match self.slot.replace(Some(t)) {
None => Ok(()),
Some(t) => self.queue.push(t),
}
}
/// Pops an item from the slot, or queue if the slot is empty.
fn pop(&self) -> Result<T, PopError> {
match self.slot.take() {
None => self.queue.pop(),
Some(t) => Ok(t),
}
}
/// Flushes the slot into the queue.
fn flush(&self) -> Result<(), PushError<T>> {
match self.slot.take() {
None => Ok(()),
Some(t) => self.queue.push(t),
}
}
/// Steals some items from another queue.
fn steal(&self, from: &ConcurrentQueue<T>) {
// Flush the slot before stealing.
if let Err(err) = self.flush() {
self.slot.set(Some(err.into_inner()));
return;
}
// Half of `from`'s length rounded up.
let mut count = (from.len() + 1) / 2;
if count > 0 {
// Don't steal more than fits into the queue.
if let Some(cap) = self.queue.capacity() {
count = count.min(cap - self.queue.len());
}
// Steal tasks.
for _ in 0..count {
if let Ok(t) = from.pop() {
assert!(self.queue.push(t).is_ok());
} else {
break;
}
}
}
}
}
/// Same as `std::thread::current().id()`, but more efficient.
fn thread_id() -> ThreadId {
thread_local! {
static ID: ThreadId = thread::current().id();
}
ID.try_with(|id| *id)
.unwrap_or_else(|_| thread::current().id())
}

View File

@ -8,7 +8,7 @@
use std::io::{self, Read, Write};
#[cfg(windows)]
use std::net::SocketAddr;
use std::sync::atomic::{self, AtomicBool, Ordering};
use std::sync::atomic::{self, Ordering};
use std::sync::Arc;
#[cfg(not(target_os = "linux"))]
@ -24,9 +24,6 @@ type Notifier = linux::EventFd;
/// A self-pipe.
struct Inner {
/// Set to `true` if notified.
flag: AtomicBool,
/// The writer side, emptied by `clear()`.
writer: Notifier,
@ -44,7 +41,6 @@ impl IoEvent {
let (writer, reader) = notifier()?;
Ok(IoEvent(Arc::new(Inner {
flag: AtomicBool::new(false),
writer,
reader: Async::new(reader)?,
})))
@ -55,46 +51,21 @@ impl IoEvent {
// Publish all in-memory changes before setting the flag.
atomic::fence(Ordering::SeqCst);
// If the flag is not set...
if !self.0.flag.load(Ordering::SeqCst) {
// If this thread sets it...
if !self.0.flag.swap(true, Ordering::SeqCst) {
// Trigger an I/O event by writing a byte into the sending socket.
let _ = (&self.0.writer).write(&1u64.to_ne_bytes());
let _ = (&self.0.writer).flush();
// Trigger an I/O event by writing a byte into the sending socket.
let _ = (&self.0.writer).write(&1u64.to_ne_bytes());
let _ = (&self.0.writer).flush();
// Re-register to wake up the poller.
let _ = self.0.reader.reregister_io_event();
}
}
// Re-register to wake up the poller.
let _ = self.0.reader.reregister_io_event();
}
/// Sets the flag to `false`.
pub fn clear(&self) -> bool {
pub fn clear(&self) {
// Read all available bytes from the receiving socket.
while self.0.reader.get_ref().read(&mut [0; 64]).is_ok() {}
let value = self.0.flag.swap(false, Ordering::SeqCst);
// Publish all in-memory changes after clearing the flag.
atomic::fence(Ordering::SeqCst);
value
}
/// Waits until notified.
///
/// You should assume notifications may spuriously occur.
pub async fn notified(&self) {
self.0
.reader
.read_with(|_| {
if self.0.flag.load(Ordering::SeqCst) {
Ok(())
} else {
Err(io::ErrorKind::WouldBlock.into())
}
})
.await
.expect("failure while waiting on a self-pipe");
}
}

View File

@ -119,16 +119,15 @@ mod async_io;
mod block_on;
mod blocking;
mod context;
mod executor;
mod io_event;
mod io_parking;
mod parking;
mod reactor;
mod run;
mod sys;
mod task;
mod thread_local;
mod throttle;
mod timer;
mod work_stealing;
pub use self::blocking::{iter, reader, writer};
pub use async_io::Async;

View File

@ -1,93 +1,127 @@
use std::cell::Cell;
use std::fmt;
use std::marker::PhantomData;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::SeqCst;
use std::sync::atomic::{AtomicUsize, Ordering::SeqCst};
use std::sync::{Arc, Condvar, Mutex};
use std::time::{Duration, Instant};
use once_cell::sync::Lazy;
use slab::Slab;
use crate::io_event::IoEvent;
use crate::reactor::{Reactor, ReactorLock};
use crate::reactor::Reactor;
pub(crate) struct IoParker {
unparker: IoUnparker,
_marker: PhantomData<*const ()>,
static REGISTRY: Lazy<Mutex<Slab<Unparker>>> = Lazy::new(|| Mutex::new(Slab::new()));
/// Parks a thread.
pub(crate) struct Parker {
key: Cell<Option<usize>>,
unparker: Unparker,
}
unsafe impl Send for IoParker {}
unsafe impl Send for Parker {}
impl IoParker {
pub fn new() -> IoParker {
IoParker {
unparker: IoUnparker {
impl Parker {
/// Creates a new [`Parker`].
pub fn new() -> Parker {
Parker {
key: Cell::new(None),
unparker: Unparker {
inner: Arc::new(Inner {
state: AtomicUsize::new(EMPTY),
lock: Mutex::new(()),
cvar: Condvar::new(),
}),
},
_marker: PhantomData,
}
}
/// Blocks the current thread until the token is made available.
pub fn park(&self) {
self.register();
self.unparker.inner.park(None);
}
/// Blocks the current thread until the token is made available or the timeout is reached.
pub fn park_timeout(&self, timeout: Duration) -> bool {
self.register();
self.unparker.inner.park(Some(timeout))
}
pub fn park_deadline(&self, deadline: Instant) -> bool {
self.unparker
.inner
.park(Some(deadline.saturating_duration_since(Instant::now())))
}
// /// Blocks the current thread until the token is made available or the deadline is reached.
// pub fn park_deadline(&self, deadline: Instant) -> bool {
// self.register();
// self.unparker
// .inner
// .park(Some(deadline.saturating_duration_since(Instant::now())))
// }
//
// /// Atomically makes the token available if it is not already.
// pub fn unpark(&self) {
// self.unparker.unpark()
// }
pub fn unpark(&self) {
self.unparker.unpark()
}
pub fn unparker(&self) -> IoUnparker {
/// Returns a handle for unparking.
pub fn unparker(&self) -> Unparker {
self.unparker.clone()
}
fn register(&self) {
if self.key.get().is_none() {
let mut reg = REGISTRY.lock().unwrap();
let key = reg.insert(self.unparker.clone());
self.key.set(Some(key));
}
}
fn unregister(&self) {
if let Some(key) = self.key.take() {
let mut reg = REGISTRY.lock().unwrap();
reg.remove(key);
// Notify another parker to make sure the reactor keeps getting polled.
if let Some((_, u)) = reg.iter().next() {
u.unpark();
}
}
}
}
impl Drop for IoParker {
impl Drop for Parker {
fn drop(&mut self) {
// TODO: wake up another active IoParker
self.unregister();
}
}
impl fmt::Debug for IoParker {
impl fmt::Debug for Parker {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("IoParker { .. }")
f.pad("Parker { .. }")
}
}
pub(crate) struct IoUnparker {
/// Unparks a thread.
pub(crate) struct Unparker {
inner: Arc<Inner>,
}
unsafe impl Send for IoUnparker {}
unsafe impl Sync for IoUnparker {}
unsafe impl Send for Unparker {}
unsafe impl Sync for Unparker {}
impl IoUnparker {
impl Unparker {
/// Atomically makes the token available if it is not already.
pub fn unpark(&self) {
self.inner.unpark()
}
}
impl fmt::Debug for IoUnparker {
impl fmt::Debug for Unparker {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("IoUnparker { .. }")
f.pad("Unparker { .. }")
}
}
impl Clone for IoUnparker {
fn clone(&self) -> IoUnparker {
IoUnparker {
impl Clone for Unparker {
fn clone(&self) -> Unparker {
Unparker {
inner: self.inner.clone(),
}
}
@ -108,8 +142,6 @@ struct Inner {
impl Inner {
fn park(&self, timeout: Option<Duration>) -> bool {
let mut reactor_lock = Reactor::get().try_lock();
// If we were previously notified then we consume this notification and return quickly.
if self
.state
@ -118,7 +150,9 @@ impl Inner {
{
// Process available I/O events.
if let Some(mut reactor_lock) = Reactor::get().try_lock() {
reactor_lock.poll().expect("failure while polling I/O");
reactor_lock
.react(Some(Duration::from_secs(0)))
.expect("failure while polling I/O");
}
return true;
}
@ -128,19 +162,21 @@ impl Inner {
if dur == Duration::from_millis(0) {
// Process available I/O events.
if let Some(mut reactor_lock) = Reactor::get().try_lock() {
reactor_lock.poll().expect("failure while polling I/O");
reactor_lock
.react(Some(Duration::from_secs(0)))
.expect("failure while polling I/O");
}
return false;
}
}
// Otherwise we need to coordinate going to sleep.
let mut m = self.lock.lock().unwrap();
let mut reactor_lock = Reactor::get().try_lock();
let state = match reactor_lock {
None => PARKED,
Some(_) => POLLING,
};
let mut m = self.lock.lock().unwrap();
match self.state.compare_exchange(EMPTY, state, SeqCst, SeqCst) {
Ok(_) => {}
@ -166,11 +202,10 @@ impl Inner {
None => m = self.cvar.wait(m).unwrap(),
Some(reactor_lock) => {
drop(m);
if EVENT.clear() {
reactor_lock.poll().expect("TODO");
} else {
reactor_lock.wait().expect("TODO");
}
reactor_lock.react(None).expect("failure while polling I/O");
EVENT.clear();
m = self.lock.lock().unwrap();
}
}
@ -185,14 +220,20 @@ impl Inner {
// Wait with a timeout, and if we spuriously wake up or otherwise wake up from a
// notification we just want to unconditionally set `state` back to `EMPTY`, either
// consuming a notification or un-flagging ourselves as parked.
let _m = match &mut reactor_lock {
let _m = match reactor_lock.as_mut() {
None => self.cvar.wait_timeout(m, timeout).unwrap().0,
Some(reactor_lock) => {
drop(m);
if EVENT.clear() {
reactor_lock.poll().expect("TODO");
} else {
reactor_lock.wait().expect("TODO"); // TODO: use actual timeout
let deadline = Instant::now() + timeout;
loop {
reactor_lock
.react(Some(deadline.saturating_duration_since(Instant::now())))
.expect("failure while polling I/O");
EVENT.clear();
if Instant::now() >= deadline {
break;
}
}
self.lock.lock().unwrap()
}

View File

@ -56,7 +56,7 @@ pub(crate) struct Reactor {
sources: piper::Mutex<Slab<Arc<Source>>>,
/// Temporary storage for I/O events when polling the reactor.
events: piper::Lock<sys::Events>,
events: piper::Mutex<sys::Events>,
/// An ordered map of registered timers.
///
@ -84,7 +84,7 @@ impl Reactor {
static REACTOR: Lazy<Reactor> = Lazy::new(|| Reactor {
sys: sys::Reactor::new().expect("cannot initialize I/O event notification"),
sources: piper::Mutex::new(Slab::new()),
events: piper::Lock::new(sys::Events::new()),
events: piper::Mutex::new(sys::Events::new()),
timers: piper::Mutex::new(BTreeMap::new()),
timer_ops: ConcurrentQueue::bounded(1000),
timer_event: Lazy::new(|| IoEvent::new().expect("cannot create an `IoEvent`")),
@ -177,13 +177,6 @@ impl Reactor {
})
}
/// Locks the reactor.
pub async fn lock(&self) -> ReactorLock<'_> {
let reactor = self;
let events = self.events.lock().await;
ReactorLock { reactor, events }
}
/// Fires ready timers.
///
/// Returns the duration until the next timer before this method was called.
@ -240,79 +233,69 @@ impl Reactor {
/// A lock on the reactor.
pub(crate) struct ReactorLock<'a> {
reactor: &'a Reactor,
events: piper::LockGuard<sys::Events>,
events: piper::MutexGuard<'a, sys::Events>,
}
impl ReactorLock<'_> {
/// Processes ready events without blocking.
pub fn poll(&mut self) -> io::Result<()> {
self.react(false)
}
/// Blocks until at least one event is processed.
pub fn wait(&mut self) -> io::Result<()> {
self.react(true)
}
/// Processes new events, optionally blocking until the first event.
fn react(&mut self, block: bool) -> io::Result<()> {
// Fire timers and compute the timeout for blocking on I/O events.
/// Processes new events, blocking until the first event or the timeout.
pub fn react(&mut self, timeout: Option<Duration>) -> io::Result<()> {
// Fire timers.
let next_timer = self.reactor.fire_timers();
let timeout = if block {
next_timer
} else {
Some(Duration::from_secs(0))
// compute the timeout for blocking on I/O events.
let timeout = match (next_timer, timeout) {
(None, None) => None,
(Some(t), None) | (None, Some(t)) => Some(t),
(Some(a), Some(b)) => Some(a.min(b)),
};
loop {
// Block on I/O events.
match self.reactor.sys.wait(&mut self.events, timeout) {
// The timeout was hit so fire ready timers.
Ok(0) => {
self.reactor.fire_timers();
return Ok(());
}
// Block on I/O events.
match self.reactor.sys.wait(&mut self.events, timeout) {
// The timeout was hit so fire ready timers.
Ok(0) => {
self.reactor.fire_timers();
return Ok(());
}
// At least one I/O event occured.
Ok(_) => {
// Iterate over sources in the event list.
let sources = self.reactor.sources.lock();
let mut ready = Vec::new();
// At least one I/O event occured.
Ok(_) => {
// Iterate over sources in the event list.
let sources = self.reactor.sources.lock();
let mut ready = Vec::new();
for ev in self.events.iter() {
// Check if there is a source in the table with this key.
if let Some(source) = sources.get(ev.key) {
let mut wakers = source.wakers.lock();
for ev in self.events.iter() {
// Check if there is a source in the table with this key.
if let Some(source) = sources.get(ev.key) {
let mut wakers = source.wakers.lock();
// Wake readers if a readability event was emitted.
if ev.readable {
ready.append(&mut wakers.readers);
}
// Wake readers if a readability event was emitted.
if ev.readable {
ready.append(&mut wakers.readers);
}
// Wake writers if a writability event was emitted.
if ev.writable {
ready.append(&mut wakers.writers);
}
// Wake writers if a writability event was emitted.
if ev.writable {
ready.append(&mut wakers.writers);
}
}
// Drop the lock before waking.
drop(sources);
// Wake up tasks waiting on I/O.
for waker in ready {
waker.wake();
}
return Ok(());
}
// The syscall was interrupted.
Err(err) if err.kind() == io::ErrorKind::Interrupted => continue,
// Drop the lock before waking.
drop(sources);
// An actual error occureed.
Err(err) => return Err(err),
// Wake up tasks waiting on I/O.
for waker in ready {
waker.wake();
}
Ok(())
}
// The syscall was interrupted.
Err(err) if err.kind() == io::ErrorKind::Interrupted => Ok(()),
// An actual error occureed.
Err(err) => Err(err),
}
}
}

View File

@ -4,19 +4,23 @@
use std::future::Future;
use std::task::{Context, Poll};
use std::thread;
use std::time::Duration;
use futures_util::future::{self, Either};
use once_cell::sync::Lazy;
use crate::block_on;
use crate::context;
use crate::io_event::IoEvent;
use crate::io_parking::{IoParker, IoUnparker};
use crate::reactor::{Reactor, ReactorLock};
use crate::thread_local::LocalExecutor;
use crate::executor::{Queue, Worker};
use crate::parking::Parker;
use crate::throttle;
use crate::work_stealing::{Executor, Worker};
use scoped_tls::scoped_thread_local;
/// The global task queue.
pub(crate) static QUEUE: Lazy<Queue> = Lazy::new(|| Queue::new());
scoped_thread_local! {
/// Thread-local worker queue.
pub(crate) static WORKER: Worker
}
/// Runs executors and polls the reactor.
///
@ -97,13 +101,10 @@ use crate::work_stealing::{Executor, Worker};
/// }
/// ```
pub fn run<T>(future: impl Future<Output = T>) -> T {
let parker = IoParker::new();
let parker = Parker::new();
let unparker = parker.unparker();
let worker = Executor::get().worker(move || unparker.unpark());
let unparker = parker.unparker();
let local = LocalExecutor::new(move || unparker.unpark());
let worker = QUEUE.worker(move || unparker.unpark());
// Create a waker that triggers an I/O event in the thread-local scheduler.
let unparker = parker.unparker();
@ -112,38 +113,24 @@ pub fn run<T>(future: impl Future<Output = T>) -> T {
futures_util::pin_mut!(future);
// Set up tokio if enabled.
// let mut enter = context::enter;
loop {
// Poll the main future.
if let Poll::Ready(val) = throttle::setup(|| future.as_mut().poll(cx)) {
return val;
}
let mut more_worker = true;
let mut more_local = true;
// enter(|| {
for _ in 0..200 {
if !worker.tick() {
more_worker = false;
break;
context::enter(|| {
WORKER.set(&worker, || {
'start: loop {
// Poll the main future.
if let Poll::Ready(val) = throttle::setup(|| future.as_mut().poll(cx)) {
return val;
}
}
for _ in 0..200 {
if !local.tick() {
more_local = false;
break;
for _ in 0..200 {
if !worker.tick() {
parker.park();
continue 'start;
}
}
}
// });
if more_local || more_worker {
// Process ready I/O events without blocking.
parker.park_timeout(Duration::from_secs(0));
} else {
// Wait until unparked.
parker.park();
}
}
// Process ready I/O events without blocking.
parker.park_timeout(Duration::from_secs(0));
}
})
})
}

View File

@ -8,8 +8,7 @@ use std::pin::Pin;
use std::task::{Context, Poll};
use crate::blocking::BlockingExecutor;
use crate::thread_local::LocalExecutor;
use crate::work_stealing::Executor;
use crate::run::{QUEUE, WORKER};
/// A runnable future, ready for execution.
///
@ -77,7 +76,11 @@ impl<T: 'static> Task<T> {
///
/// [`run()`]: `crate::run()`
pub fn local(future: impl Future<Output = T> + 'static) -> Task<T> {
LocalExecutor::spawn(future)
if WORKER.is_set() {
WORKER.with(|w| w.spawn_local(future))
} else {
panic!("cannot spawn a thread-local task if not inside an executor")
}
}
}
@ -99,7 +102,11 @@ impl<T: Send + 'static> Task<T> {
///
/// [`run()`]: `crate::run()`
pub fn spawn(future: impl Future<Output = T> + Send + 'static) -> Task<T> {
Executor::get().spawn(future)
QUEUE.spawn(future)
// WORKER.with(|w| match &*w.borrow() {
// None => QUEUE.spawn(future),
// Some(w) => w.spawn(future),
// })
}
/// Spawns a future onto the blocking executor.

View File

@ -1,152 +0,0 @@
//! The thread-local executor.
//!
//! Tasks created by [`Task::local()`] go into this executor. Every thread calling
//! [`run()`][`crate::run()`] creates a thread-local executor. Tasks cannot be spawned onto a
//! thread-local executor if it is not running.
use std::cell::{Cell, RefCell};
use std::collections::VecDeque;
use std::future::Future;
use std::sync::Arc;
use std::thread::{self, ThreadId};
use concurrent_queue::ConcurrentQueue;
use scoped_tls_hkt::scoped_thread_local;
use crate::task::{Runnable, Task};
scoped_thread_local! {
/// The thread-local executor.
///
/// This thread-local is only set while inside [`LocalExecutor::enter()`].
static EXECUTOR: LocalExecutor
}
/// An executor for thread-local tasks.
///
/// Thread-local tasks are spawned by calling [`Task::local()`] and their futures do not have to
/// implement [`Send`]. They can only be run by the same thread that created them.
pub(crate) struct LocalExecutor {
/// The main task queue.
queue: RefCell<VecDeque<Runnable>>,
/// When another thread wakes a task belonging to this executor, it goes into this queue.
injector: Arc<ConcurrentQueue<Runnable>>,
callback: Arc<dyn Fn() + Send + Sync>,
sleeping: Cell<bool>,
ticks: Cell<usize>,
}
impl LocalExecutor {
/// Creates a new thread-local executor.
pub fn new(notify: impl Fn() + Send + Sync + 'static) -> LocalExecutor {
LocalExecutor {
queue: RefCell::new(VecDeque::new()),
injector: Arc::new(ConcurrentQueue::unbounded()),
callback: Arc::new(notify),
sleeping: Cell::new(false),
ticks: Cell::new(0),
}
}
/// Enters the context of this executor.
pub fn enter<T>(&self, f: impl FnOnce() -> T) -> T {
// TODO(stjepang): Allow recursive executors.
if EXECUTOR.is_set() {
panic!("cannot run an executor inside another executor");
}
EXECUTOR.set(self, f)
}
/// Spawns a future onto this executor.
///
/// Returns a [`Task`] handle for the spawned task.
pub fn spawn<T: 'static>(future: impl Future<Output = T> + 'static) -> Task<T> {
if !EXECUTOR.is_set() {
panic!("cannot spawn a thread-local task if not inside an executor");
}
EXECUTOR.with(|ex| {
// Why weak reference here? Injector may hold the task while the task's waker holds a
// reference to the injector. So this reference must be weak to break the cycle.
let injector = Arc::downgrade(&ex.injector);
let callback = ex.callback.clone();
let id = thread_id();
// The function that schedules a runnable task when it gets woken up.
let schedule = move |runnable| {
if thread_id() == id {
// If scheduling from the original thread, push into the main queue.
EXECUTOR.with(|ex| ex.queue.borrow_mut().push_back(runnable));
} else if let Some(injector) = injector.upgrade() {
// If scheduling from a different thread, push into the injector queue.
injector.push(runnable).unwrap();
}
// Trigger an I/O event to let the original thread know that a task has been
// scheduled. If that thread is inside epoll/kqueue/wepoll, an I/O event will wake
// it up.
callback();
};
// Create a task, push it into the queue by scheduling it, and return its `Task` handle.
let (runnable, handle) = async_task::spawn_local(future, schedule, ());
runnable.schedule();
Task(Some(handle))
})
}
pub fn tick(&self) -> bool {
match self.search() {
None => {
self.ticks.set(0);
false
}
Some(r) => {
self.ticks.set(self.ticks.get() + 1);
if self.ticks.get() == 50 {
self.ticks.set(0);
self.fetch();
}
self.enter(|| r.run());
true
}
}
}
/// Finds the next task to run.
fn search(&self) -> Option<Runnable> {
// Check if there is a task in the main queue.
if let Some(r) = self.queue.borrow_mut().pop_front() {
return Some(r);
}
// If not, fetch tasks from the injector queue.
self.fetch();
// Check the main queue again.
self.queue.borrow_mut().pop_front()
}
/// Moves all tasks from the injector queue into the main queue.
fn fetch(&self) {
let mut queue = self.queue.borrow_mut();
while let Ok(r) = self.injector.pop() {
queue.push_back(r);
}
}
}
/// Same as `std::thread::current().id()`, but more efficient.
fn thread_id() -> ThreadId {
thread_local! {
static ID: ThreadId = thread::current().id();
}
ID.try_with(|id| *id)
.unwrap_or_else(|_| thread::current().id())
}

View File

@ -7,7 +7,7 @@
use std::cell::Cell;
use std::task::{Context, Poll};
use scoped_tls_hkt::scoped_thread_local;
use scoped_tls::scoped_thread_local;
scoped_thread_local! {
/// Number of times the current task is allowed to poll I/O operations.

View File

@ -1,394 +0,0 @@
//! The work-stealing executor.
//!
//! Tasks created by [`Task::spawn()`] go into this executor. Every thread calling [`run()`]
//! initializes a [`Worker`] that participates in work stealing, which is allowed to run any task
//! in this executor or in other workers. Since tasks can be stolen by any worker and thus move
//! from thread to thread, their futures must implement [`Send`].
//!
//! There is only one global instance of this type, accessible by [`Executor::get()`].
//!
//! [Work stealing] is a strategy that reduces contention in multi-threaded environments. If all
//! invocations of [`run()`] used the same global task queue all the time, they would contend on
//! the queue all the time, thus slowing the executor down.
//!
//! The solution is to have a separate queue for each invocation of [`run()`], called a "worker".
//! Each thread is primarily using its own worker. Once all tasks in the worker are exhausted, then
//! we look for tasks in the global queue, called "injector", or steal tasks from other workers.
//!
//! [`run()`]: crate::run()
//! [Work stealing]: https://en.wikipedia.org/wiki/Work_stealing
use std::cell::Cell;
use std::future::Future;
use std::panic;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, Mutex, RwLock};
use concurrent_queue::ConcurrentQueue;
use once_cell::sync::Lazy;
use scoped_tls_hkt::scoped_thread_local;
use slab::Slab;
use crate::task::{Runnable, Task};
scoped_thread_local! {
/// The current thread's worker.
///
/// Other threads may steal tasks from this worker through its associated stealer that was
/// registered in the work-stealing executor.
///
/// This thread-local is only set while inside [`Worker::enter()`].
static WORKER: for<'a> &'a Worker<'a>
}
/// The global work-stealing executor.
pub(crate) struct Executor {
/// When a thread that is not inside [`run()`][`crate::run()`] spawns or wakes a task, it goes
/// into this queue.
injector: ConcurrentQueue<Runnable>,
/// Registered handles for stealing tasks from workers.
stealers: RwLock<Slab<Arc<ConcurrentQueue<Runnable>>>>,
notified: AtomicBool,
sleepers: Mutex<Sleepers>,
}
struct Sleepers {
count: usize,
items: Vec<Arc<dyn Fn() + Send + Sync>>,
}
impl Executor {
/// Returns a reference to the global work-stealing executor.
pub fn get() -> &'static Executor {
static EXECUTOR: Lazy<Executor> = Lazy::new(|| Executor {
injector: ConcurrentQueue::unbounded(),
stealers: RwLock::new(Slab::new()),
notified: AtomicBool::new(true),
sleepers: Mutex::new(Sleepers {
count: 0,
items: Vec::new(),
}),
});
&EXECUTOR
}
fn notify(&self) {
if !self
.notified
.compare_and_swap(false, true, Ordering::SeqCst)
{
let mut sleepers = self.sleepers.lock().unwrap();
if sleepers.items.len() == sleepers.count {
if let Some(callback) = sleepers.items.pop() {
let callback = callback.clone();
drop(sleepers);
callback();
}
}
}
}
/// Spawns a future onto this executor.
///
/// Returns a [`Task`] handle for the spawned task.
pub fn spawn<T: Send + 'static>(
&'static self,
future: impl Future<Output = T> + Send + 'static,
) -> Task<T> {
// The function that schedules a runnable task when it gets woken up.
let schedule = move |runnable| {
if WORKER.is_set() {
// If scheduling from a worker thread, push into the worker's queue.
WORKER.with(|w| w.push(runnable));
} else {
// If scheduling from a non-worker thread, push into the injector queue.
self.injector.push(runnable).unwrap();
self.notify();
}
};
// Create a task, push it into the queue by scheduling it, and return its `Task` handle.
let (runnable, handle) = async_task::spawn(future, schedule, ());
runnable.schedule();
Task(Some(handle))
}
/// Registers a new worker.
///
/// The worker will automatically deregister itself when dropped.
pub fn worker(&self, notify: impl Fn() + Send + Sync + 'static) -> Worker<'_> {
let mut stealers = self.stealers.write().unwrap();
let vacant = stealers.vacant_entry();
// Create a worker and put its stealer handle into the executor.
let worker = Worker {
key: vacant.key(),
slot: Cell::new(None),
queue: Arc::new(ConcurrentQueue::bounded(512)),
executor: self,
callback: Arc::new(notify),
sleeping: Cell::new(false),
ticks: Cell::new(0),
};
vacant.insert(worker.queue.clone());
drop(stealers);
worker
}
}
/// A worker that participates in the work-stealing executor.
///
/// Each invocation of `run()` creates its own worker.
pub(crate) struct Worker<'a> {
/// The ID of this worker obtained during registration.
key: usize,
/// A slot into which tasks go before entering the actual queue.
///
/// Note that other workers cannot steal this task.
slot: Cell<Option<Runnable>>,
/// A queue of tasks.
///
/// Other workers are able to steal tasks from this queue.
queue: Arc<ConcurrentQueue<Runnable>>,
/// The parent work-stealing executor.
executor: &'a Executor,
callback: Arc<dyn Fn() + Send + Sync>,
sleeping: Cell<bool>,
ticks: Cell<usize>,
}
impl Worker<'_> {
/// Enters the context of this executor.
fn enter<T>(&self, f: impl FnOnce() -> T) -> T {
// TODO(stjepang): Allow recursive executors.
if WORKER.is_set() {
panic!("cannot run an executor inside another executor");
}
WORKER.set(self, f)
}
fn sleep(&self) -> bool {
let sleeping = self.sleeping.get();
self.sleeping.set(true);
let mut sleepers = self.executor.sleepers.lock().unwrap();
if sleeping {
if sleepers
.items
.iter()
.all(|i| !Arc::ptr_eq(i, &self.callback))
{
sleepers.items.push(self.callback.clone());
}
} else {
sleepers.count += 1;
sleepers.items.push(self.callback.clone());
}
if sleepers.count == 0 || sleepers.count > sleepers.items.len() {
self.executor.notified.swap(true, Ordering::SeqCst);
} else {
self.executor.notified.swap(false, Ordering::SeqCst);
}
!sleeping
}
fn wake(&self) -> bool {
if !self.sleeping.get() {
return false;
}
self.sleeping.set(false);
let mut sleepers = self.executor.sleepers.lock().unwrap();
sleepers.count -= 1;
sleepers.items.retain(|i| !Arc::ptr_eq(i, &self.callback)); // TODO: optimize
if sleepers.count == 0 || sleepers.count > sleepers.items.len() {
self.executor.notified.swap(true, Ordering::SeqCst);
} else {
self.executor.notified.swap(false, Ordering::SeqCst);
}
true
}
/// Executes a batch of tasks and returns `true` if there may be more tasks to run.
pub fn tick(&self) -> bool {
loop {
match self.search() {
None => {
if !self.sleep() {
// self.ticks.set(self.ticks.get().wrapping_add(1));
return false;
}
}
Some(r) => {
if !self.wake() {
self.executor.notify();
}
// Run the task.
if self.enter(|| r.run()) {
// The task was woken while it was running, which means it got
// scheduled the moment running completed. Therefore, it is now inside
// the slot and would be the next task to run.
//
// Instead of re-running the task in the next iteration, let's flush
// the slot in order to give other tasks a chance to run.
//
// This is a necessary step to ensure task yielding works as expected.
// If a task wakes itself and returns `Poll::Pending`, we don't want it
// to run immediately after that because that'd defeat the whole
// purpose of yielding.
self.flush_slot();
}
let ticks = self.ticks.get();
self.ticks.set(ticks.wrapping_add(1));
if ticks % 16 == 0 {
self.flush_slot();
}
if ticks % 64 == 0 {
if let Some(r) = self.steal_global() {
self.push(r);
}
}
return true;
}
}
}
}
/// Pushes a task into this worker.
fn push(&self, runnable: Runnable) {
// Put the task into the slot.
if let Some(r) = self.slot.replace(Some(runnable)) {
// If the slot had a task, push it into the queue.
if let Err(err) = self.queue.push(r) {
self.executor.injector.push(err.into_inner()).unwrap();
}
}
}
/// Moves a task from the slot into the local queue.
fn flush_slot(&self) {
if let Some(r) = self.slot.take() {
if let Err(err) = self.queue.push(r) {
self.executor.injector.push(err.into_inner()).unwrap();
}
}
}
/// Finds the next task to run.
fn search(&self) -> Option<Runnable> {
// Check if there is a task in the slot.
if let Some(r) = self.slot.take() {
return Some(r);
}
// Check if there is a task in the queue.
if let Ok(r) = self.queue.pop() {
return Some(r);
}
// Try stealing from the injector queue.
if let Some(r) = self.steal_global() {
return Some(r);
}
// Try stealing from other workers.
let stealers = self.executor.stealers.read().unwrap();
// Pick a random starting point in the iterator list and rotate the list.
let n = stealers.len();
let start = fastrand::usize(..n);
let iter = stealers.iter().chain(stealers.iter()).skip(start).take(n);
// Remove this worker's stealer handle.
let iter = iter.filter(|(k, _)| *k != self.key);
let iter = iter.map(|(_, q)| q);
// Try stealing from each worker in the list.
for q in iter {
let count = self
.queue
.capacity()
.unwrap_or(usize::MAX)
.min((q.len() + 1) / 2);
// Steal half of the tasks from this worker.
for _ in 0..count {
if let Ok(r) = q.pop() {
self.push(r);
} else {
break;
}
}
// Check if there is a task in the slot.
if let Some(r) = self.slot.take() {
return Some(r);
}
}
None
}
/// Steals tasks from the injector queue.
fn steal_global(&self) -> Option<Runnable> {
let count = self
.queue
.capacity()
.unwrap_or(usize::MAX)
.min((self.executor.injector.len() + 1) / 2);
// Steal half of the tasks from the injector queue.
for _ in 0..count {
if let Ok(r) = self.executor.injector.pop() {
self.push(r);
} else {
break;
}
}
// If anything was stolen, a task must be in the slot.
self.slot.take()
}
}
impl Drop for Worker<'_> {
fn drop(&mut self) {
// Unregister the worker.
self.executor.stealers.write().unwrap().remove(self.key);
// Move the task in the slot into the injector queue.
if let Some(r) = self.slot.take() {
r.schedule();
}
// Move all tasks in this worker's queue into the injector queue.
while let Ok(r) = self.queue.pop() {
r.schedule();
}
self.wake();
// This task will not search for tasks anymore and therefore won't notify other workers if
// new tasks are found. Notify another worker to start searching right away.
self.executor.notify();
}
}