Initial version

This commit is contained in:
Stjepan Glavina 2020-08-19 13:34:03 +00:00
parent 251ab32f59
commit 71d3dfcbab
12 changed files with 840 additions and 68 deletions

1
.github/FUNDING.yml vendored Normal file
View File

@ -0,0 +1 @@
github: stjepang

51
.github/workflows/build-and-test.yaml vendored Normal file
View File

@ -0,0 +1,51 @@
name: Build and test
on:
push:
branches:
- master
pull_request:
jobs:
build_and_test:
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ubuntu-latest]
rust: [nightly, beta, stable]
steps:
- uses: actions/checkout@v2
- name: Set current week of the year in environnement
if: startsWith(matrix.os, 'ubuntu') || startsWith(matrix.os, 'macOS')
run: echo "::set-env name=CURRENT_WEEK::$(date +%V)"
- name: Set current week of the year in environnement
if: startsWith(matrix.os, 'windows')
run: echo "::set-env name=CURRENT_WEEK::$(Get-Date -UFormat %V)"
- name: Install latest ${{ matrix.rust }}
uses: actions-rs/toolchain@v1
with:
toolchain: ${{ matrix.rust }}
profile: minimal
override: true
- name: Run cargo check
uses: actions-rs/cargo@v1
with:
command: check
args: --all --bins --examples --tests --all-features
- name: Run cargo check (without dev-dependencies to catch missing feature flags)
if: startsWith(matrix.rust, 'nightly')
uses: actions-rs/cargo@v1
with:
command: check
args: -Z features=dev_dep
- name: Run cargo test
uses: actions-rs/cargo@v1
with:
command: test

26
.github/workflows/lint.yaml vendored Normal file
View File

@ -0,0 +1,26 @@
name: Lint
on:
push:
branches:
- master
pull_request:
jobs:
clippy:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set current week of the year in environnement
run: echo "::set-env name=CURRENT_WEEK::$(date +%V)"
- uses: actions-rs/toolchain@v1
with:
toolchain: stable
profile: minimal
components: clippy
- uses: actions-rs/clippy-check@v1
with:
token: ${{ secrets.GITHUB_TOKEN }}
args: --all-features -- -W clippy::all

20
.github/workflows/security.yaml vendored Normal file
View File

@ -0,0 +1,20 @@
name: Security audit
on:
push:
branches:
- master
pull_request:
jobs:
security_audit:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set current week of the year in environnement
run: echo "::set-env name=CURRENT_WEEK::$(date +%V)"
- uses: actions-rs/audit-check@v1
with:
token: ${{ secrets.GITHUB_TOKEN }}

3
CHANGELOG.md Normal file
View File

@ -0,0 +1,3 @@
# Version 0.1.1
- Initial version

View File

@ -1,16 +1,22 @@
[package]
name = "async-process"
version = "0.1.0"
version = "0.1.1"
authors = ["Stjepan Glavina <stjepang@gmail.com>"]
edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
description = "Async interface for working with processes"
license = "Apache-2.0 OR MIT"
repository = "https://github.com/stjepang/async-process"
homepage = "https://github.com/stjepang/async-process"
documentation = "https://docs.rs/async-process"
keywords = ["process", "spawn", "command", "subprocess", "child"]
categories = ["asynchronous", "os"]
readme = "README.md"
[dependencies]
async-channel = "1.4.0"
cfg-if = "0.1.10"
futures-lite = "0.1.11"
once_cell = "1.4.1"
futures-lite = "0.1.11"
[target.'cfg(unix)'.dependencies]
async-io = "0.1.11"
@ -21,13 +27,8 @@ blocking = "0.5.1"
[target.'cfg(windows)'.dependencies.winapi]
version = "0.3.9"
default-features = false
features = [
"handleapi",
"winerror",
"minwindef",
"processthreadsapi",
"synchapi",
"threadpoollegacyapiset",
"winbase",
"winnt",
]

201
LICENSE-APACHE Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

23
LICENSE-MIT Normal file
View File

@ -0,0 +1,23 @@
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

71
README.md Normal file
View File

@ -0,0 +1,71 @@
# async-process
[![Build](https://github.com/stjepang/async-process/workflows/Build%20and%20test/badge.svg)](
https://github.com/stjepang/async-process/actions)
[![License](https://img.shields.io/badge/license-MIT%2FApache--2.0-blue.svg)](
https://github.com/stjepang/async-process)
[![Cargo](https://img.shields.io/crates/v/async-process.svg)](
https://crates.io/crates/async-process)
[![Documentation](https://docs.rs/async-process/badge.svg)](
https://docs.rs/async-process)
Async interface for working with processes.
This crate is an async version of `std::process`.
## Implementation
A background thread named "async-process" is lazily created on first use, which waits for
spawned child processes to exit and then calls the `wait()` syscall to clean up the "zombie"
processes. This is unlike the `process` API in the standard library, where dropping a running
`Child` leaks its resources.
This crate uses [`async-io`] for async I/O on Unix-like systems and [`blocking`] for async I/O
on Windows.
[`async-io`]: https://docs.rs/async-io
[`blocking`]: https://docs.rs/blocking
## Examples
Spawn a process and collect its output:
```rust
use async_process::Command;
let out = Command::new("echo").arg("hello").arg("world").output().await?;
assert_eq!(out.stdout, b"hello world\n");
```
Read the output line-by-line as it gets produced:
```rust
use async_process::{Command, Stdio};
use futures_lite::{AsyncBufReadExt, StreamExt, io::BufReader};
let mut child = Command::new("find")
.arg(".")
.stdout(Stdio::piped())
.spawn()?;
let mut lines = BufReader::new(child.stdout.take().unwrap()).lines();
while let Some(line) = lines.next().await {
println!("{}", line?);
}
```
## License
Licensed under either of
* Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
* MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
at your option.
#### Contribution
Unless you explicitly state otherwise, any contribution intentionally submitted
for inclusion in the work by you, as defined in the Apache-2.0 license, shall be
dual licensed as above, without any additional terms or conditions.

View File

@ -1,29 +0,0 @@
use std::io;
use std::os::unix::process::ExitStatusExt;
use async_process::{Command, ExitStatus, Stdio};
use futures_lite::*;
fn main() -> io::Result<()> {
future::block_on(async {
// dbg!(std::process::Command::new("ls").arg(".").spawn()?.wait_with_output())?;
dbg!(
Command::new("ls")
.arg(".")
.stdout(Stdio::piped())
.stderr(Stdio::piped())
.status()
.await
)?;
// let mut child = Command::new("/bin/sh")
// .arg("-c")
// .arg("kill -9 $$")
// .spawn()?;
// let status = child.status().await?;
// dbg!(status);
Ok(())
})
}

View File

@ -1,9 +1,59 @@
//! Async execution and interaction with processes.
//! Async interface for working with processes.
//!
//! This crate is an async version of [`std::process`].
//!
//! # Implementation
//!
//! A background thread named "async-process" is lazily created on first use, which waits for
//! spawned child processes to exit and then calls the `wait()` syscall to clean up the "zombie"
//! processes. This is unlike the `process` API in the standard library, where dropping a running
//! `Child` leaks its resources.
//!
//! This crate uses [`async-io`] for async I/O on Unix-like systems and [`blocking`] for async I/O
//! on Windows.
//!
//! [`async-io`]: https://docs.rs/async-io
//! [`blocking`]: https://docs.rs/blocking
//!
//! # Examples
//!
//! Spawn a process and collect its output:
//!
//! ```no_run
//! # futures_lite::future::block_on(async {
//! use async_process::Command;
//!
//! let out = Command::new("echo").arg("hello").arg("world").output().await?;
//! assert_eq!(out.stdout, b"hello world\n");
//! # std::io::Result::Ok(()) });
//! ```
//!
//! Read the output line-by-line as it gets produced:
//!
//! ```no_run
//! # futures_lite::future::block_on(async {
//! use async_process::{Command, Stdio};
//! use futures_lite::{AsyncBufReadExt, StreamExt, io::BufReader};
//!
//! let mut child = Command::new("find")
//! .arg(".")
//! .stdout(Stdio::piped())
//! .spawn()?;
//!
//! let mut lines = BufReader::new(child.stdout.take().unwrap()).lines();
//!
//! while let Some(line) = lines.next().await {
//! println!("{}", line?);
//! }
//! # std::io::Result::Ok(()) });
//! ```
#![cfg_attr(unix, forbid(unsafe_code))]
#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms)]
use std::ffi::OsStr;
use std::fmt;
use std::future::Future;
use std::path::Path;
use std::pin::Pin;
use std::sync::{Arc, Mutex};
@ -15,22 +65,52 @@ use async_channel::{Receiver, Sender};
use async_io::Async;
#[cfg(windows)]
use blocking::Unblock;
use futures_lite::*;
use futures_lite::{future, io, AsyncReadExt};
use once_cell::sync::Lazy;
#[doc(no_inline)]
pub use std::process::{ExitStatus, Output, Stdio};
/// A spawned child process.
///
/// The process can be in running or exited state. Use [`status()`][`Child::status()`] or
/// [`output()`][`Child::output()`] to wait for it to exit.
///
/// If the [`Child`] is dropped, the process keeps running in the background.
///
/// # Examples
///
/// Spawn a process and wait for it to complete:
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::Command;
///
/// Command::new("cp").arg("a.txt").arg("b.txt").status().await?;
/// # std::io::Result::Ok(()) });
/// ```
pub struct Child {
/// The handle for writing to the child's standard input (stdin), if it has been captured.
pub stdin: Option<ChildStdin>,
/// The handle for reading from the child's standard output (stdout), if it has been captured.
pub stdout: Option<ChildStdout>,
/// The handle for reading from the child's standard error (stderr), if it has been captured.
pub stderr: Option<ChildStderr>,
/// The inner handle to the child process.
child: Arc<Mutex<std::process::Child>>,
/// A channel that gets closed when the process exits.
exited: Receiver<()>,
}
impl Child {
/// Wraps the inner child process handle and registers it in the global process list.
///
/// The "async-process" thread waits for processes in the global list and cleans up the
/// resources when they exit.
fn new(mut child: std::process::Child) -> io::Result<Child> {
cfg_if::cfg_if! {
if #[cfg(windows)] {
@ -81,12 +161,16 @@ impl Child {
}
} else if #[cfg(unix)] {
static SIGNALS: Lazy<signal_hook::iterator::Signals> = Lazy::new(|| {
signal_hook::iterator::Signals::new(&[signal_hook::SIGCHLD])
.expect("cannot set signal handler for SIGCHLD")
});
// Make sure the signal handler is registered before interacting with the process.
Lazy::force(&SIGNALS);
// Waits for the next SIGCHLD signal.
fn wait_sigchld() {
static SIGNALS: Lazy<signal_hook::iterator::Signals> = Lazy::new(|| {
signal_hook::iterator::Signals::new(&[signal_hook::SIGCHLD])
.expect("cannot set signal handler for SIGCHLD")
});
SIGNALS.forever().next();
}
@ -149,20 +233,87 @@ impl Child {
})
}
/// Returns the OS-assigned process identifier associated with this child.
///
/// # Examples
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::Command;
///
/// let mut child = Command::new("ls").spawn()?;
/// println!("id: {}", child.id());
/// # std::io::Result::Ok(()) });
/// ```
pub fn id(&self) -> u32 {
self.child.lock().unwrap().id()
}
/// Forces the child process to exit.
///
/// If the child has already exited, an [`InvalidInput`] error is returned.
///
/// This is equivalent to sending a SIGKILL on Unix platforms.
///
/// [`InvalidInput`]: `std::io::ErrorKind::InvalidInput`
///
/// # Examples
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::Command;
///
/// let mut child = Command::new("yes").spawn()?;
/// child.kill()?;
/// println!("exit status: {}", child.status().await?);
/// # std::io::Result::Ok(()) });
/// ```
pub fn kill(&mut self) -> io::Result<()> {
self.child.lock().unwrap().kill()
}
// NOTE: unlike status(), does not drop stdin
/// Returns the exit status if the process has exited.
///
/// Unlike [`status()`][`Child::status()`], this method will not drop the stdin handle.
///
/// # Examples
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::Command;
///
/// let mut child = Command::new("ls").spawn()?;
///
/// match child.try_status()? {
/// None => println!("still running"),
/// Some(status) => println!("exited with: {}", status),
/// }
/// # std::io::Result::Ok(()) });
/// ```
pub fn try_status(&mut self) -> io::Result<Option<ExitStatus>> {
self.child.lock().unwrap().try_wait()
}
// NOTE: drops stdin
/// Drops the stdin handle and waits for the process to exit.
///
/// Closing the stdin of the process helps avoid deadlocks. It ensures that the process does
/// not block waiting for input from the parent process while the parent waits for the child to
/// exit.
///
/// # Examples
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::{Command, Stdio};
///
/// let mut child = Command::new("cp")
/// .arg("a.txt")
/// .arg("b.txt")
/// .spawn()?;
///
/// println!("exit status: {}", child.status().await?);
/// # std::io::Result::Ok(()) });
/// ```
pub fn status(&mut self) -> impl Future<Output = io::Result<ExitStatus>> {
self.stdin.take();
let child = self.child.clone();
@ -174,10 +325,34 @@ impl Child {
}
}
// NOTE: this closes stdin and drains stdout+stderr
/// Drops the stdin handle and collects the output of the process.
///
/// Closing the stdin of the process helps avoid deadlocks. It ensures that the process does
/// not block waiting for input from the parent process while the parent waits for the child to
/// exit.
///
/// In order to capture the output of the process, [`Command::stdout()`] and
/// [`Command::stderr()`] must be configured with [`Stdio::piped()`].
///
/// # Examples
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::{Command, Stdio};
///
/// let child = Command::new("ls")
/// .stdout(Stdio::piped())
/// .stderr(Stdio::piped())
/// .spawn()?;
///
/// let out = child.output().await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn output(mut self) -> impl Future<Output = io::Result<Output>> {
// A future that waits for the exit status.
let status = self.status();
// A future that collects stdout.
let stdout = self.stdout.take();
let stdout = async move {
let mut v = Vec::new();
@ -187,6 +362,7 @@ impl Child {
Ok(v)
};
// A future that collects stderr.
let stderr = self.stderr.take();
let stderr = async move {
let mut v = Vec::new();
@ -208,12 +384,27 @@ impl Child {
}
}
impl fmt::Debug for Child {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Child")
.field("stdin", &self.stdin)
.field("stdout", &self.stdout)
.field("stderr", &self.stderr)
.finish()
}
}
/// A handle to a child process's standard input (stdin).
///
/// When a [`ChildStdin`] is dropped, the underlying handle gets clossed. If the child process was
/// previously blocked on input, it becomes unblocked after dropping.
#[derive(Debug)]
pub struct ChildStdin(
#[cfg(windows)] Unblock<std::process::ChildStdin>,
#[cfg(unix)] Async<std::process::ChildStdin>,
);
impl AsyncWrite for ChildStdin {
impl io::AsyncWrite for ChildStdin {
fn poll_write(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
@ -231,12 +422,16 @@ impl AsyncWrite for ChildStdin {
}
}
/// A handle to a child process's standard output (stdout).
///
/// When a [`ChildStdout`] is dropped, the underlying handle gets closed.
#[derive(Debug)]
pub struct ChildStdout(
#[cfg(windows)] Unblock<std::process::ChildStdout>,
#[cfg(unix)] Async<std::process::ChildStdout>,
);
impl AsyncRead for ChildStdout {
impl io::AsyncRead for ChildStdout {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
@ -246,12 +441,16 @@ impl AsyncRead for ChildStdout {
}
}
/// A handle to a child process's standard error (stderr).
///
/// When a [`ChildStderr`] is dropped, the underlying handle gets closed.
#[derive(Debug)]
pub struct ChildStderr(
#[cfg(windows)] Unblock<std::process::ChildStderr>,
#[cfg(unix)] Async<std::process::ChildStderr>,
);
impl AsyncRead for ChildStderr {
impl io::AsyncRead for ChildStderr {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
@ -261,89 +460,292 @@ impl AsyncRead for ChildStderr {
}
}
pub struct Command(std::process::Command);
/// A builder for spawning processes.
///
/// # Examples
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::Command;
///
/// let output = if cfg!(target_os = "windows") {
/// Command::new("cmd").args(&["/C", "echo hello"]).output().await?
/// } else {
/// Command::new("sh").arg("-c").arg("echo hello").output().await?
/// };
/// # std::io::Result::Ok(()) });
/// ```
#[derive(Debug)]
pub struct Command {
cmd: std::process::Command,
stdin: Option<Stdio>,
stdout: Option<Stdio>,
stderr: Option<Stdio>,
}
impl Command {
/// Constructs a new [`Command`] for launching `program`.
///
/// The initial configuration (the working directory and environment variables) is inherited
/// from the current process.
///
/// # Examples
///
/// ```
/// use async_process::Command;
///
/// let mut cmd = Command::new("ls");
/// ```
pub fn new<S: AsRef<OsStr>>(program: S) -> Command {
Command(std::process::Command::new(program))
Command {
cmd: std::process::Command::new(program),
stdin: None,
stdout: None,
stderr: None,
}
}
/// Adds a single argument to pass to the program.
///
/// # Examples
///
/// ```
/// use async_process::Command;
///
/// let mut cmd = Command::new("echo");
/// cmd.arg("hello");
/// cmd.arg("world");
/// ```
pub fn arg<S: AsRef<OsStr>>(&mut self, arg: S) -> &mut Command {
self.0.arg(arg);
self.cmd.arg(arg);
self
}
/// Adds multiple arguments to pass to the program.
///
/// # Examples
///
/// ```
/// use async_process::Command;
///
/// let mut cmd = Command::new("echo");
/// cmd.args(&["hello", "world"]);
/// ```
pub fn args<I, S>(&mut self, args: I) -> &mut Command
where
I: IntoIterator<Item = S>,
S: AsRef<OsStr>,
{
self.0.args(args);
self.cmd.args(args);
self
}
/// Configures an environment variable for the new process.
///
/// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
/// and case-sensitive on all other platforms.
///
/// # Examples
///
/// ```
/// use async_process::Command;
///
/// let mut cmd = Command::new("ls");
/// cmd.env("PATH", "/bin");
/// ```
pub fn env<K, V>(&mut self, key: K, val: V) -> &mut Command
where
K: AsRef<OsStr>,
V: AsRef<OsStr>,
{
self.0.env(key, val);
self.cmd.env(key, val);
self
}
/// Configures multiple environment variables for the new process.
///
/// Note that environment variable names are case-insensitive (but case-preserving) on Windows,
/// and case-sensitive on all other platforms.
///
/// # Examples
///
/// ```
/// use async_process::Command;
///
/// let mut cmd = Command::new("ls");
/// cmd.envs(vec![("PATH", "/bin"), ("TERM", "xterm-256color")]);
/// ```
pub fn envs<I, K, V>(&mut self, vars: I) -> &mut Command
where
I: IntoIterator<Item = (K, V)>,
K: AsRef<OsStr>,
V: AsRef<OsStr>,
{
self.0.envs(vars);
self.cmd.envs(vars);
self
}
/// Removes an environment variable mapping.
///
/// # Examples
///
/// ```
/// use async_process::Command;
///
/// let mut cmd = Command::new("ls");
/// cmd.env_remove("PATH");
/// ```
pub fn env_remove<K: AsRef<OsStr>>(&mut self, key: K) -> &mut Command {
self.0.env_remove(key);
self.cmd.env_remove(key);
self
}
/// Removes all environment variable mappings.
///
/// # Examples
///
/// ```
/// use async_process::Command;
///
/// let mut cmd = Command::new("ls");
/// cmd.env_clear();
/// ```
pub fn env_clear(&mut self) -> &mut Command {
self.0.env_clear();
self.cmd.env_clear();
self
}
/// Configures the working directory for the new process.
///
/// # Examples
///
/// ```
/// use async_process::Command;
///
/// let mut cmd = Command::new("ls");
/// cmd.current_dir("/");
/// ```
pub fn current_dir<P: AsRef<Path>>(&mut self, dir: P) -> &mut Command {
self.0.current_dir(dir);
self.cmd.current_dir(dir);
self
}
/// Configures the standard input (stdin) for the new process.
///
/// # Examples
///
/// ```
/// use async_process::{Command, Stdio};
///
/// let mut cmd = Command::new("cat");
/// cmd.stdin(Stdio::null());
/// ```
pub fn stdin<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
self.0.stdin(cfg);
self.stdin = Some(cfg.into());
self
}
/// Configures the standard output (stdout) for the new process.
///
/// # Examples
///
/// ```
/// use async_process::{Command, Stdio};
///
/// let mut cmd = Command::new("ls");
/// cmd.stdout(Stdio::piped());
/// ```
pub fn stdout<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
self.0.stdout(cfg);
self.stdout = Some(cfg.into());
self
}
/// Configures the standard error (stderr) for the new process.
///
/// # Examples
///
/// ```
/// use async_process::{Command, Stdio};
///
/// let mut cmd = Command::new("ls");
/// cmd.stderr(Stdio::piped());
/// ```
pub fn stderr<T: Into<Stdio>>(&mut self, cfg: T) -> &mut Command {
self.0.stderr(cfg);
self.stderr = Some(cfg.into());
self
}
/// Executes the command and returns the [`Child`] handle to it.
///
/// If not configured, stdin, stdout and stderr will be set to [`Stdio::inherit()`].
///
/// After spawning the process, stdin, stdout, and stderr become unconfigured again.
///
/// # Examples
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::Command;
///
/// let child = Command::new("ls").spawn()?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn spawn(&mut self) -> io::Result<Child> {
Child::new(self.0.spawn()?)
let (stdin, stdout, stderr) = (self.stdin.take(), self.stdout.take(), self.stderr.take());
self.cmd.stdin(stdin.unwrap_or(Stdio::inherit()));
self.cmd.stdout(stdout.unwrap_or(Stdio::inherit()));
self.cmd.stderr(stderr.unwrap_or(Stdio::inherit()));
Child::new(self.cmd.spawn()?)
}
/// Executes the command, waits for it to exit, and returns the exit status.
///
/// If not configured, stdin, stdout and stderr will be set to [`Stdio::inherit()`].
///
/// After spawning the process, stdin, stdout, and stderr become unconfigured again.
///
/// # Examples
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::Command;
///
/// let status = Command::new("cp")
/// .arg("a.txt")
/// .arg("b.txt")
/// .status()
/// .await?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn status(&mut self) -> impl Future<Output = io::Result<ExitStatus>> {
let child = self.spawn();
async { child?.status().await }
}
/// Executes the command and collects its output.
///
/// If not configured, stdin will be set to [`Stdio::null()`], and stdout and stderr will be
/// set to [`Stdio::piped()`].
///
/// After spawning the process, stdin, stdout, and stderr become unconfigured again.
///
/// # Examples
///
/// ```no_run
/// # futures_lite::future::block_on(async {
/// use async_process::Command;
///
/// let child = Command::new("ls").spawn()?;
/// # std::io::Result::Ok(()) });
/// ```
pub fn output(&mut self) -> impl Future<Output = io::Result<Output>> {
self.0.stdout(Stdio::piped());
self.0.stderr(Stdio::piped());
let child = self.spawn();
async { child?.output().await }
let (stdin, stdout, stderr) = (self.stdin.take(), self.stdout.take(), self.stderr.take());
self.cmd.stdin(stdin.unwrap_or(Stdio::null()));
self.cmd.stdout(stdout.unwrap_or(Stdio::piped()));
self.cmd.stderr(stderr.unwrap_or(Stdio::piped()));
let child = self.cmd.spawn();
async { Child::new(child?)?.output().await }
}
}

View File

@ -1,3 +1,5 @@
//! These tests are borrowed from the `std::process` test suite.
use std::env;
use std::str;