concurrent-queue/tests/loom.rs

308 lines
7.8 KiB
Rust

#![cfg(loom)]
use concurrent_queue::{ConcurrentQueue, ForcePushError, PopError, PushError};
use loom::sync::atomic::{AtomicUsize, Ordering};
use loom::sync::{Arc, Condvar, Mutex};
use loom::thread;
#[cfg(target_family = "wasm")]
use wasm_bindgen_test::wasm_bindgen_test as test;
/// A basic MPMC channel based on a ConcurrentQueue and loom primitives.
struct Channel<T> {
/// The queue used to contain items.
queue: ConcurrentQueue<T>,
/// The number of senders.
senders: AtomicUsize,
/// The number of receivers.
receivers: AtomicUsize,
/// The event that is signaled when a new item is pushed.
push_event: Event,
/// The event that is signaled when a new item is popped.
pop_event: Event,
}
/// The sending side of a channel.
struct Sender<T> {
/// The channel.
channel: Arc<Channel<T>>,
}
/// The receiving side of a channel.
struct Receiver<T> {
/// The channel.
channel: Arc<Channel<T>>,
}
/// Create a new pair of senders/receivers based on a queue.
fn pair<T>(queue: ConcurrentQueue<T>) -> (Sender<T>, Receiver<T>) {
let channel = Arc::new(Channel {
queue,
senders: AtomicUsize::new(1),
receivers: AtomicUsize::new(1),
push_event: Event::new(),
pop_event: Event::new(),
});
(
Sender {
channel: channel.clone(),
},
Receiver { channel },
)
}
impl<T> Clone for Sender<T> {
fn clone(&self) -> Self {
self.channel.senders.fetch_add(1, Ordering::SeqCst);
Sender {
channel: self.channel.clone(),
}
}
}
impl<T> Drop for Sender<T> {
fn drop(&mut self) {
if self.channel.senders.fetch_sub(1, Ordering::SeqCst) == 1 {
// Close the channel and notify the receivers.
self.channel.queue.close();
self.channel.push_event.signal_all();
}
}
}
impl<T> Clone for Receiver<T> {
fn clone(&self) -> Self {
self.channel.receivers.fetch_add(1, Ordering::SeqCst);
Receiver {
channel: self.channel.clone(),
}
}
}
impl<T> Drop for Receiver<T> {
fn drop(&mut self) {
if self.channel.receivers.fetch_sub(1, Ordering::SeqCst) == 1 {
// Close the channel and notify the senders.
self.channel.queue.close();
self.channel.pop_event.signal_all();
}
}
}
impl<T> Sender<T> {
/// Send a value.
///
/// Returns an error with the value if the channel is closed.
fn send(&self, mut value: T) -> Result<(), T> {
loop {
match self.channel.queue.push(value) {
Ok(()) => {
// Notify a single receiver.
self.channel.push_event.signal();
return Ok(());
}
Err(PushError::Closed(val)) => return Err(val),
Err(PushError::Full(val)) => {
// Wait for a receiver to pop an item.
value = val;
self.channel.pop_event.wait();
}
}
}
}
/// Send a value forcefully.
fn force_send(&self, value: T) -> Result<Option<T>, T> {
match self.channel.queue.force_push(value) {
Ok(bumped) => {
self.channel.push_event.signal();
Ok(bumped)
}
Err(ForcePushError(val)) => Err(val),
}
}
}
impl<T> Receiver<T> {
/// Channel capacity.
fn capacity(&self) -> Option<usize> {
self.channel.queue.capacity()
}
/// Receive a value.
///
/// Returns an error if the channel is closed.
fn recv(&self) -> Result<T, ()> {
loop {
match self.channel.queue.pop() {
Ok(value) => {
// Notify a single sender.
self.channel.pop_event.signal();
return Ok(value);
}
Err(PopError::Closed) => return Err(()),
Err(PopError::Empty) => {
// Wait for a sender to push an item.
self.channel.push_event.wait();
}
}
}
}
}
/// An event that can be waited on and then signaled.
struct Event {
/// The condition variable used to wait on the event.
condvar: Condvar,
/// The mutex used to protect the event.
///
/// Inside is the event's state. The first bit is used to indicate if the
/// notify_one method was called. The second bit is used to indicate if the
/// notify_all method was called.
mutex: Mutex<usize>,
}
impl Event {
/// Create a new event.
fn new() -> Self {
Self {
condvar: Condvar::new(),
mutex: Mutex::new(0),
}
}
/// Wait for the event to be signaled.
fn wait(&self) {
let mut state = self.mutex.lock().unwrap();
loop {
if *state & 0b11 != 0 {
// The event was signaled.
*state &= !0b01;
return;
}
// Wait for the event to be signaled.
state = self.condvar.wait(state).unwrap();
}
}
/// Signal the event.
fn signal(&self) {
let mut state = self.mutex.lock().unwrap();
*state |= 1;
drop(state);
self.condvar.notify_one();
}
/// Signal the event, but notify all waiters.
fn signal_all(&self) {
let mut state = self.mutex.lock().unwrap();
*state |= 3;
drop(state);
self.condvar.notify_all();
}
}
/// Wrapper to run tests on all three queues.
fn run_test<F: Fn(ConcurrentQueue<usize>, usize) + Send + Sync + Clone + 'static>(f: F) {
// The length of a loom test seems to increase exponentially the higher this number is.
const LIMIT: usize = 4;
let fc = f.clone();
loom::model(move || {
fc(ConcurrentQueue::bounded(1), LIMIT);
});
let fc = f.clone();
loom::model(move || {
fc(ConcurrentQueue::bounded(LIMIT / 2), LIMIT);
});
loom::model(move || {
f(ConcurrentQueue::unbounded(), LIMIT);
});
}
#[test]
fn spsc() {
run_test(|q, limit| {
// Create a new pair of senders/receivers.
let (tx, rx) = pair(q);
// Push each onto a thread and run them.
let handle = thread::spawn(move || {
for i in 0..limit {
if tx.send(i).is_err() {
break;
}
}
});
let mut recv_values = vec![];
loop {
match rx.recv() {
Ok(value) => recv_values.push(value),
Err(()) => break,
}
}
// Values may not be in order.
recv_values.sort_unstable();
assert_eq!(recv_values, (0..limit).collect::<Vec<_>>());
// Join the handle before we exit.
handle.join().unwrap();
});
}
#[test]
fn spsc_force() {
run_test(|q, limit| {
// Create a new pair of senders/receivers.
let (tx, rx) = pair(q);
// Push each onto a thread and run them.
let handle = thread::spawn(move || {
for i in 0..limit {
if tx.force_send(i).is_err() {
break;
}
}
});
let mut recv_values = vec![];
loop {
match rx.recv() {
Ok(value) => recv_values.push(value),
Err(()) => break,
}
}
// Values may not be in order.
recv_values.sort_unstable();
let cap = rx.capacity().unwrap_or(usize::MAX);
for (left, right) in (0..limit)
.rev()
.take(cap)
.zip(recv_values.into_iter().rev())
{
assert_eq!(left, right);
}
// Join the handle before we exit.
handle.join().unwrap();
});
}