vec-arena/examples/splay_tree.rs

167 lines
4.4 KiB
Rust

extern crate vec_arena;
use vec_arena::VecArena;
struct Node<T> {
parent: usize,
children: [usize; 2],
value: T,
}
impl<T> Node<T> {
fn new(value: T) -> Node<T> {
Node {
parent: !0,
children: [!0, !0],
value: value,
}
}
}
struct Splay<T> {
arena: VecArena<Node<T>>,
root: usize,
}
impl<T> Splay<T> where T: Ord {
/// Constructs a new, empty splay tree.
fn new() -> Splay<T> {
Splay {
arena: VecArena::new(),
root: !0,
}
}
/// Links nodes `p` and `c` as parent and child with the specified direction.
#[inline(always)]
fn link(&mut self, p: usize, c: usize, dir: usize) {
self.arena[p].children[dir] = c;
if c != !0 {
self.arena[c].parent = p;
}
}
/// Performs a rotation on node `c`, whose parent is node `p`.
#[inline(always)]
fn rotate(&mut self, p: usize, c: usize) {
// Variables:
// - `c` is the child node
// - `p` is it's parent
// - `g` is it's grandparent
// Find the grandparent.
let g = self.arena[p].parent;
// The direction of p-c relationship.
let dir = if self.arena[p].children[0] == c { 0 } else { 1 };
// This is the child of `c` that needs to be reassigned to `p`.
let t = self.arena[c].children[dir ^ 1];
self.link(p, t, dir);
self.link(c, p, dir ^ 1);
if g == !0 {
// There is no grandparent, so `c` becomes the root.
self.root = c;
self.arena[c].parent = !0;
} else {
// Link `g` and `c` together.
let dir = if self.arena[g].children[0] == p { 0 } else { 1 };
self.link(g, c, dir);
}
}
/// Splays node
fn splay(&mut self, c: usize) {
loop {
// Variables:
// - `c` is the current node
// - `p` is it's parent
// - `g` is it's grandparent
// Find the parent.
let p = self.arena[c].parent;
if p == !0 {
// There is no parent. That means `c` is the root.
break;
}
// Find the grandparent.
let g = self.arena[p].parent;
if g == !0 {
// There is no grandparent. Just one rotation is left.
// Zig step.
self.rotate(p, c);
break;
}
if (self.arena[g].children[0] == p) == (self.arena[p].children[0] == c) {
// Zig-zig step.
self.rotate(g, p);
self.rotate(p, c);
} else {
// Zig-zag step.
self.rotate(p, c);
self.rotate(g, c);
}
}
}
/// Inserts a new node with specified `value`.
fn insert(&mut self, value: T) {
// Variables:
// - `n` is the new node
// - `p` will be it's parent
// - `c` is the present child of `p`
let n = self.arena.insert(Node::new(value));
if self.root == !0 {
self.root = n;
} else {
let mut p = self.root;
loop {
// Decide whether to go left or right.
let dir = if self.arena[n].value < self.arena[p].value { 0 } else { 1 };
let c = self.arena[p].children[dir];
if c == !0 {
self.link(p, n, dir);
self.splay(n);
break;
}
p = c;
}
}
}
/// Pretty-prints the subtree rooted at `node`, indented by `depth` spaces.
fn print(&self, node: usize, depth: usize) where T: std::fmt::Display {
if node != !0 {
// Print the left subtree.
self.print(self.arena[node].children[0], depth + 1);
// Print the current node.
println!("{:width$}{}", "", self.arena[node].value, width = depth * 3);
// Print the right subtree.
self.print(self.arena[node].children[1], depth + 1);
}
}
}
fn main() {
let mut splay = Splay::new();
// Insert a bunch of pseudorandom numbers.
let mut num = 1u32;
for _ in 0..30 {
num = num.wrapping_mul(17).wrapping_add(255);
splay.insert(num);
}
// Display the whole splay tree.
splay.print(splay.root, 0);
}